這個論文應該算是把深度學習應用到圖片識別(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意義的一篇文章。因為在之前,人們一直質疑深度學習的強大有能力。 大家看看它的引用數目就知道它很厲害了,,9000多的引用 ...
感知野的概念尤為重要,對於理解和診斷CNN網絡是否工作,其中一個神經元的感知野之外的圖像並不會對神經元的值產生影響,所以去確保這個神經元覆蓋的所有相關的圖像區域是十分重要的 需要對輸出圖像的單個像素進行預測的任務,使每一個輸出像素具有一個比較大的感知野是十分重要的,在做預測試時,每一個關鍵的信息就不會被遺漏。 增大感知野的方法: 理論上可以通過搭建更多的層的網絡實現感知域的線性增加,靠着卷積過濾器 ...
2019-09-05 22:14 0 661 推薦指數:
這個論文應該算是把深度學習應用到圖片識別(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意義的一篇文章。因為在之前,人們一直質疑深度學習的強大有能力。 大家看看它的引用數目就知道它很厲害了,,9000多的引用 ...
這篇論文提出了AlexNet,奠定了深度學習在CV領域中的地位。 1. ReLu激活函數 2. Dropout 3. 數據增強 網絡的架構如圖所示 包含八個學習層:五個卷積神經網絡和三個全連接網絡,並且使用了最大池化。 RELU非線性層 傳統的神經網絡的輸出包括$tanh ...
本文作者為:Xavier Glorot與Yoshua Bengio。 本文干了點什么呢? 第一步:探索了不同的激活函數對網絡的影響(包括:sigmoid函數,雙曲正切函數和softsign y = ...
2014 ECCV 紐約大學 Matthew D. Zeiler, Rob Fergus 簡單介紹(What) 提出了一種可視化的技巧,能夠看到CNN中間層的特征功能和分類操作。 通過對 ...
之前,我知道可以可視化CNN,也只是知道有這么一回事情。至於它是“怎么做的、其原理是什么、給我們的指導意義是什么”,也不清楚。說白了,就是我知道有“CNN可視化”,僅僅停留在“知道”層面!但當自己 ...
概述 雖然CNN深度卷積網絡在圖像識別等領域取得的效果顯著,但是目前為止人們對於CNN為什么能取得如此好的效果卻無法解釋,也無法提出有效的網絡提升策略。利用本文的反卷積可視 ...
《ImageNet Classification with Deep Convolutional Neural Networks》 剖析 CNN 領域的經典之作, 作者訓練了一個面向數量為 1.2 百萬的高分辨率的圖像數據集ImageNet, 圖像的種類為1000 種的深度卷積神經網絡 ...
這是CVPR 2019的一篇oral。 預備知識點:Geometric median 幾何中位數 \begin{equation}\underset{y \in \mathbb{R}^{n}}{\ ...