在NLP任務中,訓練數據一般是一句話(中文或英文),輸入序列數據的每一步是一個字母。我們需要對數據進行的預處理是:先對這些字母使用獨熱編碼再把它輸入到RNN中,如字母a表示為(1, 0, 0, 0 ...
詞匯表使用one hot編碼,一個詞在一列向量里只有一個位置是 ,其他位置為 ,缺點是浪費空間,而且看不出各個單詞之間的關系。 詞嵌入用一個高維向量表示一個單詞,意思相近的詞的詞嵌入比較接近,泛化能力強。 高維空間不好表示,t SNe算法可將高維空間映射為二維空間。apple與orange挨得較近。 學習詞嵌入通常會考察很大文本集,幾十億單詞很常見。可以下載詞嵌入矩陣,用於自己訓練集很小的模型作 ...
2019-08-31 21:42 0 475 推薦指數:
在NLP任務中,訓練數據一般是一句話(中文或英文),輸入序列數據的每一步是一個字母。我們需要對數據進行的預處理是:先對這些字母使用獨熱編碼再把它輸入到RNN中,如字母a表示為(1, 0, 0, 0 ...
參考:Word2Vec Tutorial - The Skip-Gram Model 參考:Word2Vec Tutorial Part 2 - Negative Sampling 參考:通俗理解word2vec 參考:word2vec 中的數學原理詳解 參考:一文搞懂word ...
在許多自然語言處理任務中,許多單詞表達是由他們的tf-idf分數決定的。即使這些分數告訴我們一個單詞在一個文本中的相對重要性,但是他們並沒有告訴我們單詞的語義。Word2Vec是一類神經網絡模型——在給定無標簽的語料庫的情況下,為語料庫的單詞產生一個能表達語義的向量。 word2vec ...
轉自:https://blog.csdn.net/fendouaini/article/details/79905328 1.回顧DNN訓練詞向量 上次說到了通過DNN模型訓練詞獲得詞向量,這次來講解下如何用word2vec訓練詞獲取詞向量。 回顧下之前所說的DNN訓練詞向量的模型 ...
首先感謝無私分享的各位大神,文中很多內容多有借鑒之處。本次將自己的實驗過程記錄,希望能幫助有需要的同學。 一、從下載數據開始 現在的中文語料庫不是特別豐富,我在之前的文章中略有整理, ...
Distributed Representation 這種表示,它最早是 Hinton 於 1986 年提出的,可以克服 one-hot representation 的缺點。 其基本想法是: 通過訓練將某種語言中的每一個詞映射成一個固定長度的短向量 ...
假設每個詞對應一個詞向量,假設: 1)兩個詞的相似度正比於對應詞向量的乘積。即:$sim(v_1,v_2)=v_1\cdot v_2$。即點乘原則; 2)多個詞$v_1\sim v_n$組成的一個上下文用$C$來表示,其中$C=\sum_{i=1}^{n}v_i$。$\frac{C}{|C ...