對比與有正負樣例的二分類SVM,one-class SVM可以訓練出一個高維超球面,把數據盡可能緊的包圍起來。 場景: 花果山上的老猴子,一生閱猴無數,但是從來沒有見過其它的物種。有一天,豬八戒來到花果山找它們的大王,老猴子一聲令下,把這個東西給我綁起來! 這里老猴子很清楚的知道這個外來物種 ...
novelty detection:當訓練數據中沒有離群點,我們的目標是用訓練好的模型去檢測另外發現的新樣本 outlier dection:當訓練數據中包含離群點,模型訓練時要匹配訓練數據的中心樣本,忽視訓練樣本中的其他異常點。 一 outlier dection .孤立森林 Isolation Forest iForest適用於連續數據 Continuous numerical data 的 ...
2019-06-21 17:57 1 1083 推薦指數:
對比與有正負樣例的二分類SVM,one-class SVM可以訓練出一個高維超球面,把數據盡可能緊的包圍起來。 場景: 花果山上的老猴子,一生閱猴無數,但是從來沒有見過其它的物種。有一天,豬八戒來到花果山找它們的大王,老猴子一聲令下,把這個東西給我綁起來! 這里老猴子很清楚的知道這個外來物種 ...
paper 地址 https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/tkdd11.pdf 孤立森林,isolation forest,簡稱 iforest; 它由 周志華 老師提出,本質是一種 無監督算法,其主要用於異常點檢測 ...
異常檢測 我們經常需要識別一些異常行為或者表現,比如 機器是否故障,產品是否合格,這類問題的特點就是 正常數據很多,異常數據很少,甚至根本沒有; 解決這種問題的思路就是,把 訓練樣本中 一小部分數據認為是 異常數據,然后訓練一個 非常緊湊的決策邊界,把 大部分被認為是正常的樣本 框起來,並以 ...
假如現在有 \(\ell\) 個同一分布的觀察數據,每條數據都有 \(p\) 個特征。如果現在加入一個或多個觀察數據,那么是否這些數據與原有的數據十分不同,甚至我們可以懷疑其是否屬於同一分布呢?反過來講,是否這些數據與原有的數據十分相似,我們無法將其區分呢?這便是異常檢測工具和方法需要解決的問題 ...
用機器學習檢測異常點擊流 本文內容是我學習ML時做的一個練手項目,描述應用機器學習的一般步驟。該項目的目標是從點擊流數據中找出惡意用戶的請求。點擊流數據長下圖這樣子,包括請求時間、IP、平台等特征: 該項目從開始做到階段性完成,大致可分為兩個階段:算法選擇和工程優化。算法選擇階段 ...
這里先列出 sklearn 官方給出的使用高斯核(RBF kernel) one class svm 實現二維數據的異常檢測: 效果如下圖: 下面簡單介紹一下 sklearn.svm.OneClassSVM 函數的用法: decision_function(self, X) 點到 ...
機器學習_深度學習_入門經典(博主永久免費教學視頻系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&s ...
簡介 工作的過程中經常會遇到這樣一個問題,在構建模型訓練數據時,我們很難保證訓練數據的純凈度,數據中往往會參雜很多被錯誤標記噪聲數據,而數據的質量決定了最終模型性能的好壞。如果進行人工二次標記,成本會很高,我們希望能使用一種無監督算法幫我們做這件事,異常檢測算法可以在一定程度上解決這個問題 ...