機器學習是時下流行AI技術中一個很重要的方向,無論是有監督學習還是無監督學習都使用各種“度量”來得到不同樣本數據的差異度或者不同樣本數據的相似度。良好的“度量”可以顯著提高算法的分類或預測的准確率,本文中將介紹機器學習中各種“度量”,“度量”主要由兩種,分別為距離、相似度和相關系數 ...
機器學習是時下流行AI技術中一個很重要的方向,無論是有監督學習還是無監督學習都使用各種 度量 來得到不同樣本數據的差異度或者不同樣本數據的相似度。良好的 度量 可以顯著提高算法的分類或預測的准確率,本文中將介紹機器學習中各種 度量 , 度量 主要由兩種,分別為距離 相似度和相關系數,距離的研究主體一般是線性空間中點 而相似度研究主體是線性空間中向量 相關系數研究主體主要是分布數據。本文主要介紹統計 ...
2019-06-15 18:30 0 732 推薦指數:
機器學習是時下流行AI技術中一個很重要的方向,無論是有監督學習還是無監督學習都使用各種“度量”來得到不同樣本數據的差異度或者不同樣本數據的相似度。良好的“度量”可以顯著提高算法的分類或預測的准確率,本文中將介紹機器學習中各種“度量”,“度量”主要由兩種,分別為距離、相似度和相關系數 ...
機器學習算法 原理、實現與實踐 —— 距離的度量 聲明:本篇文章內容大部分轉載於July於CSDN的文章:從K近鄰算法、距離度量談到KD樹、SIFT+BBF算法,對內容格式與公式進行了重新整理。同時,文章中會有一些對知識點的個人理解和歸納補充,不代表原文章作者的意圖 ...
機器學習是時下流行AI技術中一個很重要的方向,無論是有監督學習還是無監督學習都使用各種“度量”來得到不同樣本數據的差異度或者不同樣本數據的相似度。良好的“度量”可以顯著提高算法的分類或預測的准確率,本文中將介紹機器學習中各種“度量”,“度量”主要由兩種,分別為距離、相似度和相關系數 ...
機器學習是時下流行AI技術中一個很重要的方向,無論是有監督學習還是無監督學習都使用各種“度量”來得到不同樣本數據的差異度或者不同樣本數據的相似度。良好的“度量”可以顯著提高算法的分類或預測的准確率,本文中將介紹機器學習中各種“度量”,“度量”主要由兩種,分別為距離、相似度和相關系數 ...
0x00 概述 在數據挖掘中,我們經常需要計算樣本之間的相似度,通常的做法是計算樣本之間的距離。 在本文中,數據科學家 Maarten Grootendorst 向我們介紹了 9 種距離度量方法,其中包括歐氏距離、余弦相似度等。 許多算法,無論是監督學習還是無監督學習,都會使用距離度量 ...
馬氏距離(Mahalanobis Distance) 馬氏距離(Mahalanobis Distance)是由印度統計學家馬哈拉諾比斯(P. C. Mahalanobis)提出的,表示數據的協方差距離。它是一種有效的計算兩個未知樣本集的相似度的方法。它考慮到數據特征之間的聯系,並且是尺度無關 ...
在機器學習過程中,我們經常需要知道個體(樣本)之間的差異大小,進而評價個體的相似性和類別,特征空間中兩個樣本(點)之間的距離就是兩個樣本相似性的一種反映。常見的分類和聚類算法,如K近鄰、K均值(K-means)、層次聚類等等都會選擇一種距離或相似性的度量方法。根據數據特性的不同,可以采用不同的度量 ...
在機器學習和數據挖掘中,我們經常需要知道個體間差異的大小,進而評價個體的相似性和類別。最常見的是數據分析中的相關分析,數據挖掘中的分類和聚類算法,如 K 最近鄰(KNN)和 K 均值(K-Means)等等。 不同距離度量的應用場景 根據數據特性的不同,可以采用不同的度量方法。which one ...