原文:TensorFlow——dropout和正則化的相關方法

.dropout dropout是一種常用的手段,用來防止過擬合的,dropout的意思是在訓練過程中每次都隨機選擇一部分節點不要去學習,減少神經元的數量來降低模型的復雜度,同時增加模型的泛化能力。雖然會使得學習速度降低,因而需要合理的設置保留的節點數量。 在TensorFlow中dropout的函數原型如下:def dropout x, keep prob, noise shape None, ...

2019-06-02 20:25 0 788 推薦指數:

查看詳情

TensorFlow之DNN(三):神經網絡的正則化方法(Dropout、L2正則化、早停和數據增強)

這一篇博客整理用TensorFlow實現神經網絡正則化的內容。 深層神經網絡往往具有數十萬乃至數百萬的參數,可以進行非常復雜的特征變換,具有強大的學習能力,因此容易在訓練集上過擬合。緩解神經網絡的過擬合問題,一般有兩種思路,一種是用正則化方法,也就是限制模型的復雜度,比如Dropout、L1 ...

Fri Apr 26 00:10:00 CST 2019 0 2533
1-6 dropout 正則化

dropout 正則化Dropout Regularization) 除了L2正則化,還有一個非常實用的正則化方法——Dropout( 隨機失活): 假設你在訓練上圖這樣的神經網絡,它存在過擬合,這就是 dropout 所要處理的,我們復制這個神經網絡, dropout 會遍歷網絡 ...

Mon Sep 03 07:01:00 CST 2018 0 1582
1.6 dropout正則化

  除了L2正則化,還有一個非常實用的正則化方法----dropout(隨機失活),下面介紹其工作原理。 假設你在訓練下圖左邊的這樣的神經網絡,它存在過擬合情況,這就是dropout所要處理的。我們復制這個神經網絡,dropout會遍歷網絡每一層,並設置一個消除神經網絡中節點的概率 ...

Fri Apr 13 18:06:00 CST 2018 0 1014
TensorFlow(三)---------正則化

TensorFlow正則化經常被用於Deep-Learn中,泛化數據模型,解決過擬合問題。再深度學習網絡只有在有足夠大的數據集時才能產生驚人的學習效果。當數據量不夠時,過擬合的問題就會經常發生。然而,只選取我們需要的數據量的模型,就會非常難以繼續進行泛化和優化。所以正則化技術孕育而生 ...

Mon Nov 13 04:58:00 CST 2017 0 1339
TensorFlow正則化添加方法整理

一、基礎正則化函數 tf.contrib.layers.l1_regularizer(scale, scope=None) 返回一個用來執行L1正則化的函數,函數的簽名是func(weights). 參數: scale: 正則項的系數. scope: 可選的scope name ...

Tue Aug 14 22:21:00 CST 2018 1 9657
(四) Keras Dropout正則化的使用

視頻學習來源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 筆記 使用dropout是要改善過擬合,將訓練和測試的准確率差距變小 訓練集,測試集結果相比差距較大時,過擬合 ...

Wed Feb 27 04:43:00 CST 2019 0 5918
正則化方法:L1和L2 regularization、數據集擴增、dropout

正則化方法:L1和L2 regularization、數據集擴增、dropout 本文是《Neural networks and deep learning》概覽 中第三章的一部分,講機器學習/深度學習算法中常用的正則化方法。(本文會不斷補充) 正則化方法:防止過擬合,提高泛化能力 ...

Wed May 20 04:36:00 CST 2015 0 2815
正則化方法:L1和L2 regularization、數據集擴增、dropout

正則化方法:L1和L2 regularization 本文是《Neural networks and deep learning》概覽 中第三章的一部分,講機器學習/深度學習算法中常用的正則化方法。(本文會不斷補充) 正則化方法:防止過擬合,提高泛化能力 ...

Fri Mar 16 18:25:00 CST 2018 0 3833
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM