訓練的時候很”脆弱”,很容易就”die”了,訓練過程該函數不適應較大梯度輸入,因為在參數更新以后,ReLU的神經元不會再有激活的功能,導致梯度永遠都是零。 例如,一個非常大的梯度流過一個 ReLU 神經元,更新過參數之后,這個神經元再也不會對任何數據有激活現象了,那么這個神經元的梯度就永遠 ...
Relu不適合梯度過大的的輸入 Relu是我們在訓練網絡時常用的激活函數之一 對我而言沒有之一 。然而最近發現Relu太脆弱了,經常由於輸入的函數梯度過大導致網絡參數更新后,神經元不再有激活功能。特別是網絡在訓練剛開始的時候 如果在使用Focal loss,這種現象更容易發生 。 在這種情況下,或許softplus可以嘗試一下。相關資料請移步softplus softplus ...
2019-05-25 21:00 0 853 推薦指數:
訓練的時候很”脆弱”,很容易就”die”了,訓練過程該函數不適應較大梯度輸入,因為在參數更新以后,ReLU的神經元不會再有激活的功能,導致梯度永遠都是零。 例如,一個非常大的梯度流過一個 ReLU 神經元,更新過參數之后,這個神經元再也不會對任何數據有激活現象了,那么這個神經元的梯度就永遠 ...
預訓練的用處:規則化,防止過擬合;壓縮數據,去除冗余;強化特征,減小誤差;加快收斂速度。標准的sigmoid輸出不具備稀疏性,需要用一些懲罰因子來訓練出一大堆接近0的冗余數據來,從而產生稀疏數據,例如L1、L1/L2或Student-t作懲罰因子。因此需要進行無監督的預訓練。而ReLU是線性修正 ...
1、激活函數的作用 什么是激活函數? 在神經網絡中,輸入經過權值加權計算並求和之后,需要經過一個函數的作用,這個函數就是激活函數(Activation Function)。 ...
Batch normalization + ReLU 批歸一化(BN)可以抑制梯度爆炸/消失並加快訓練速度 原論文認為批歸一化的原理是:通過歸一化操作使網絡的每層特征的分布盡可能的穩定,從而減少Internal Covariate Shift relu是目前應用最為廣泛的激活函數 ...
Rectified Linear Unit), 顧名思義:帶參數的ReLU。二者的定義和區別如下圖: 如果a ...
ReLU上的花樣 CNN出現以來,感覺在各個地方,即便是非常小的地方都有點可以挖掘。比如ReLU。 ReLU的有效性體現在兩個方面: 克服梯度消失的問題 加快訓練速度 而這兩個方面是相輔相成的,因為克服了梯度消失問題,所以訓練才會快。 ReLU的起源,在這片博文里 ...
Rectifier(neural networks) 在人工神經網絡中,rectfier(整流器,校正器)是一個激活函數,它的定義是:參數中為正的部分。 , 其中,x是神經元的輸入。這也被稱為r ...
0 - inplace 在pytorch中,nn.ReLU(inplace=True)和nn.LeakyReLU(inplace=True)中存在inplace字段。該參數的inplace=True的意思是進行原地操作,例如: x=x+5是對x的原地操作 y=x+5,x=y ...