1. 參數初始化的目的是什么? 為了讓神經網絡在訓練過程中學習到有用的信息,這意味着參數梯度不應該為0。而我們知道在全連接的神經網絡中,參數梯度和反向傳播得到的狀態梯度以及入激活值有關。那么參數初始化應該滿足以下兩個條件: 初始化必要條件一:各層激活值不會出現飽和現象 ...
我們知道,訓練神經網絡的時候需先給定一個初試值,然后才能通過反向傳播等方法進行參數更新。所以參數的初始化也是門學問。 全 初始化:不能這么做 為什么呢 因為這樣做會導致所有參數都無法被更新。 網絡上有好多解釋,感覺都不夠簡潔,其實這個原理很簡單。 我們想象一個三層的神經網絡,節點分別為 z ,z ,z ,z ,z ,z ,其中 z i f a i ,,i , , f為激活函數。 那么前向傳播有: ...
2019-04-15 16:09 0 1166 推薦指數:
1. 參數初始化的目的是什么? 為了讓神經網絡在訓練過程中學習到有用的信息,這意味着參數梯度不應該為0。而我們知道在全連接的神經網絡中,參數梯度和反向傳播得到的狀態梯度以及入激活值有關。那么參數初始化應該滿足以下兩個條件: 初始化必要條件一:各層激活值不會出現飽和現象 ...
1 參數初始化 神經網絡的參數學習是一個非凸優化問題,在使用梯度下降法進行網絡參數優化時,參數初始值的選取十分關鍵,關系到網絡的優化效率(梯度消失和梯度爆炸問題)和泛化能力(局部最優解問題)。參數初始化的方式通常有以下三種: 預訓練初始化:不同的參數初始值會收斂到不同的局部最優解 ...
在神經網絡中,參數默認是進行隨機初始化的。如果不設置的話每次訓練時的初始化都是隨機的,導致結果不確定。如果設置初始化,則每次初始化都是固定的。 ...
from:http://blog.csdn.net/u013989576/article/details/76215989 權值初始化的方法主要有:常量初始化(constant)、高斯分布初始化(gaussian)、positive_unitball初始化、均勻分布初始化(uniform ...
目錄 為什么要權值初始化? Xavier初始化 Kaiming初始化 pytorch中的初始化 pytorch搭建網絡自動初始化 為什么要權值初始化? 權重初始化的目的是:防止在深度神經網絡的正向(前向)傳播過程中層激活函數的輸出損失梯度爆炸 ...
1. 為什么要初始化權重 為了使網絡中的信息更好的傳遞,每一層的特征的方差(標准差)應該盡可能相等,否則可能會導致梯度爆炸或者消失。 權重初始化的目的是在深度神經網絡中前向傳遞時,阻止網絡層的激活函數輸出爆炸(無窮大)或者消失(0)。如果網絡層的輸出爆炸或者消失,損失函數的梯度 也會變得 ...
1,概述 神經網絡中的權值初始化方法有很多,但是這些方法的設計也是遵循一些邏輯的,並且也有自己的適用場景。首先我們假定輸入的每個特征是服從均值為0,方差為1的分布(一般輸入到神經網絡的數據都是要做歸一化的,就是為了達到這個條件)。 為了使網絡中的信息更好的傳遞,每一層的特征的方差應該 ...
在神經網絡中,通常需要隨機初始化模型參數。下面我們來解釋這樣做的原因。 回顧多層感知機。為了方便解釋,假設輸出層只保留一個輸出單元 且隱藏層使用相同的激活函數。如果將每個隱藏單元的參數都初始化為相等的值,那么在正向傳播時每個隱藏單元將根據相同的輸入計算出相同的值,並傳遞至輸出層。在反向傳播中 ...