來源:https://www.jianshu.com/p/c02a1fbffad6 簡單易懂的softmax交叉熵損失函數求導 來寫一個softmax求導的推導過程,不僅可以給自己理清思路,還可以造福大眾,豈不美哉~ softmax經常被添加在分類任務的神經網絡中的輸出層,神經網絡的反向傳播中 ...
前言:softmax中的求導包含矩陣與向量的求導關系,記錄的目的是為了回顧。 下圖為利用softmax對樣本進行k分類的問題,其損失函數的表達式為結構風險,第二項是模型結構的正則化項。 首先,每個queue:x i 的特征維度是 n , 參數 是一個 n k 的矩陣,輸出的結果 y i 為一個 k 的向量,其中第 j 個元素對應元素的 e 指數為該 queue 屬於第 j 類的概率 未歸一化 。所 ...
2019-04-10 18:55 0 890 推薦指數:
來源:https://www.jianshu.com/p/c02a1fbffad6 簡單易懂的softmax交叉熵損失函數求導 來寫一個softmax求導的推導過程,不僅可以給自己理清思路,還可以造福大眾,豈不美哉~ softmax經常被添加在分類任務的神經網絡中的輸出層,神經網絡的反向傳播中 ...
softmax是logisitic regression在多酚類問題上的推廣,\(W=[w_1,w_2,...,w_c]\)為各個類的權重因子,\(b\)為各類的門檻值。不要想象成超平面,否則很難理解,如果理解成每個類的打分函數,則會直觀許多。預測時我們把樣本分配到得分最高的類 ...
(圖出自李宏毅老師的PPT) 對機器學習/深度學習有所了解的同學肯定不會對 softmax 陌生,它時而出現在多分類中用於得到每個類別的概率,時而出現在二分類中用於得到正樣本的概率(當然,這個時候 softmax 以 sigmoid 的形式出現)。 1. 從 sigmoid ...
轉自:詳解softmax函數以及相關求導過程 這幾天學習了一下softmax激活函數,以及它的梯度求導過程,整理一下便於分享和交流! 一、softmax函數 softmax用於多分類過程中,它將多個神經元的輸出,映射到(0,1)區間內,可以看成概率來理解,從而來進行 ...
一、softmax函數 softmax用於多分類過程中,它將多個神經元的輸出,映射到(0,1)區間內,可以看成概率來理解,從而來進行多分類! 假設我們有一個數組,V,Vi表示V中的第i個元素,那么這個元素的softmax值就是: $$ S_i = \frac{e^j }{ \sum ...
1、sigmoid函數 sigmoid函數,也就是s型曲線函數,如下: 函數: 導數: 上面是我們常見的形式,雖然知道這樣的形式,也知道計算流程,不夠感覺並不太直觀,下面來分析一下。 1.1 從指數函數到sigmoid 首先我們來畫出指數函數 ...
Softmax函數與交叉熵損失函數 深度學習新手,如果錯誤,還請指正,謝謝 Softmax激勵函數 用於生成各個結果的概率分布,其輸出概率之和為1,同時取概率最高的作為結果 交叉熵損失函數(Cross Entropy Loss) softmax函數結果與真實值計算交叉熵 ...