1.降維或升維,減少參數量 通過1*1卷積核的個數,來控制輸出的通道數也就是維度 通過一次卷積操作,W*H*6將變為W*H*1,這樣的話,使用5個1*1的卷積核,顯然可以卷積出5個W*H*1,再做通道的串接操作,就實現了W*H*5 對於某個卷積層,無論輸入圖像有多少個通道,輸出圖像通道數總是 ...
.改變模型維度 二維的輸入數據 如 和 的卷積核 卷積,相當於原輸入數據直接做乘法 三維的輸入數據 如 和 的卷積核卷積,相當於卷積核的 個數對原輸入數據的 個數加權求和,結果填到最右側對應方框中 升維還是降維取決於卷積核的個數 .減少模型參數,增加模型深度 圖 a 中,參數個數: 最終輸出的feature map個數: 圖 b 中,參數個數 x x 最終輸出的feature map個數: 匯合 ...
2019-03-13 18:59 1 726 推薦指數:
1.降維或升維,減少參數量 通過1*1卷積核的個數,來控制輸出的通道數也就是維度 通過一次卷積操作,W*H*6將變為W*H*1,這樣的話,使用5個1*1的卷積核,顯然可以卷積出5個W*H*1,再做通道的串接操作,就實現了W*H*5 對於某個卷積層,無論輸入圖像有多少個通道,輸出圖像通道數總是 ...
權值共享基本上有兩種方法: 在同一特征圖和不同通道特征圖都使用共享權值,這樣的卷積參數是最少的,例如上一層為30*30*40,當使用3*3*120的卷積核進行卷積時,卷積參數為:3*3*120個.(卷積跟mlp有區別也有聯系一個神經元是平面排列,一個是線性排列) 第二種只在同一特征圖上 ...
1*1的卷積核在NIN、Googlenet中被廣泛使用,但其到底有什么作用也是一直困擾的問題,這里總結和歸納下在網上查到的自認為很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升維和降維 3)減少卷積核參數(簡化模型) 1 - 引入 在我學習吳恩達老師 ...
中用1*1*m的卷積核卷積n(如512)個特征圖的每一個位置(像素點),其實對於每一個位置的1*1卷積 ...
發現很多網絡使用1×1的卷積核,實際就是對輸入的一個比例縮放,因為1×1卷積核只有一個參數,這個核在輸入上滑動,就相當於給輸入數據乘以一個系數。(對於單通道和單個卷積核而言這樣理解是可以的) 對於多通道和多個卷積核的理解,1×1卷積核大概有兩方面的作用:1.實現跨通道的交互和信息整合(具有 ...
CNN中,1X1卷積核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 從NIN 到Googlenet mrsa net 都是用了這個,為什么呢? 發現很多網絡使用了1X1卷積核,這能起到什么作用 ...
目錄 舉例 在Inception module上的應用 參考資料 可以減少計算量,可以增加非線性判別能力 舉例 假設有1個高為30、寬為40,深度為200的三維張量與55個高為5、寬為5、深度為200的卷積核same卷積 ...
1 - 引入 在我學習吳恩達老師Deeplearning.ai深度學習課程的時候,老師在第四講卷積神經網絡第二周深度卷積網絡:實例探究的2.5節網絡中的網絡以及1×1卷積對1×1卷積做了較為詳細且通俗易懂的解釋。現自己做一下記錄。 2 - 1×1卷積理解 假設當前輸入張量維度 ...