接上篇:卷積神經網絡對圖片分類-上 5 池層(Pooling Layers) 池層通常用在卷積層之后,池層的作用就是簡化卷積層里輸出的信息, 減少數據維度,降低計算開銷,控制過擬合。 如之前所說,一張28X28的輸入圖片,經過5X5的過濾器后會得到一個24X24的特征圖像,繼續 ...
問題來源:寫了一個神經網絡,需要用的測試集是本地圖片。 第一次嘗試解決:將本地圖片讀取,亂序,存成npz形式的文件。在第二次使用時,load這個npz文件。但這個方法針對圖片量比較大的情況沒辦法應對,圖片大小超過電腦內存。 第二次嘗試解決:嘗試將文件分批存儲成npz形式,一次讀取數據進行訓練,但是在keras平台下難以訓練。 第三次嘗試解決:采用迭代器分批讀取數據,使用fit generator分 ...
2019-03-08 16:50 0 582 推薦指數:
接上篇:卷積神經網絡對圖片分類-上 5 池層(Pooling Layers) 池層通常用在卷積層之后,池層的作用就是簡化卷積層里輸出的信息, 減少數據維度,降低計算開銷,控制過擬合。 如之前所說,一張28X28的輸入圖片,經過5X5的過濾器后會得到一個24X24的特征圖像,繼續 ...
把所有的數據(整個數據庫)輸入網絡中,然后計算它們的梯度進行反向傳播,由於在計算梯度時使用了整個數據庫,所 ...
1.卷積層 1.1torch.nn.Conv2d()類式接口 參數: in_channel:輸入數據的通道數,例RGB圖片通道數為3; out_channel:輸出數據的通道數,也就是kernel數量; kernel_size: 卷積核大小,可以是int ...
我們來看看在圖像處理領域如何使用卷積神經網絡來對圖片進行分類。 1 讓計算機做圖片分類: 圖片分類就是輸入一張圖片,輸出該圖片對應的類別(狗,貓,船,鳥),或者說輸出該圖片屬於哪種分類的可能性最大。 人類看到一張圖片馬上就能分辨出里面的內容,但是計算機分辨一張圖片就完全 ...
利用TensorFlow1.0搭建卷積神經網絡用於識別MNIST數據集,算是深度學習里的hello world吧。雖然只有兩個卷積層,但在訓練集上的正確率已經基本達到100%了。 代碼如下: 訓練一共訓練了3個多小時,訓練效果應當很棒。 但在測試集上,由於一次直接讀入10000 ...
上期我們講解了卷積神經網絡的基本結構,相信你們已經有一個大概的概念了,這期具體講解卷積神經網絡中最基本組成部分-卷積操作,使用邊緣檢測做為入門樣例,接下來讓你們看到卷積是如何進行運算的。 人臉檢測 神經網絡的前幾層只能檢測邊緣邊緣,比如:人臉的鼻子旁邊的垂直線,后面的幾層 ...
接上篇:卷積神經網絡對圖片分類-中 9 ReLU(Rectified Linear Units) Layers 在每個卷積層之后,會馬上進入一個激勵層,調用一種激勵函數來加入非線性因素,決絕線性不可分的問題。這里我們選擇的激勵函數方式叫做ReLU, 他的方程是這樣f(x) = max ...
這兩天在折騰Caffe的時候遇到過各種奇怪的問題,拿幾個感覺比較重要的來說一下。之后想到什么再追加。 GPU運算無法正常使用 環境預載期錯誤(3 vs. 0) 似乎是因為有其他設備在使用GPU導致的,我的情況是等待一段時間就好了。 網絡加載期錯誤(2 vs. 0) 不清楚具體 ...