導入模塊: 下載手寫數據集: 訓練數據60000個,長度和寬度都是28,標簽也是6000個。 測試數據10000個。 圖形化數據集,查看前10個數據集: 數據預處理: 將features以reshape轉化 ...
視頻學習來源 https: www.bilibili.com video av from search amp seid 筆記 Adam,常用優化器之一 大多數情況下,adma速度較快,達到較優值迭代周期較少, 一般比SGD效果好 CNN應用於手寫識別 C: Program Files x Microsoft Visual Studio Shared Anaconda lib site packa ...
2019-02-27 19:38 0 1728 推薦指數:
導入模塊: 下載手寫數據集: 訓練數據60000個,長度和寬度都是28,標簽也是6000個。 測試數據10000個。 圖形化數據集,查看前10個數據集: 數據預處理: 將features以reshape轉化 ...
在本篇博文當中,筆者采用了卷積神經網絡來對手寫數字進行識別,采用的神經網絡的結構是:輸入圖片——卷積層——池化層——卷積層——池化層——卷積層——池化層——Flatten層——全連接層(64個神經元)——全連接層(500個神經元)——softmax函數,最后得到分類的結果。Flatten層用於將池 ...
https://github.com/jelly-lemon/keras_mnist_0112 用Keras實現MNIST手寫數字識別 MNIST手寫數字數據集介紹 MNIST手寫數字數據集來自美國國家標准與技術研究所,National Institute of Standards ...
MNIST手寫數字集 MNIST是一個由美國由美國郵政系統開發的手寫數字識別數據集。手寫內容是0~9,一共有60000個圖片樣本,我們可以到MNIST官網免費下載,總共4個.gz后綴的壓縮文件,該文件是二進制內容。 文件名 大小 用途 ...
1. 知識點准備 在了解 CNN 網絡神經之前有兩個概念要理解,第一是二維圖像上卷積的概念,第二是 pooling 的概念。 a. 卷積 關於卷積的概念和細節可以參考這里,卷積運算有兩個非常重要特性,以下面這個一維的卷積為例子: 第一個特性是稀疏連接。可以看到, layer m ...
手寫數字識別數據集簡介 MNIST數據集(修改的國家標准與技術研究所——Modified National Institute of Standards and Technology),是一個大型的包含手寫數字圖片的數據集。該數據集由0-9手寫數字 ...
基於CNN的手寫數字識別程序 一、數據准備 訓練及測試數據采用Tensorflow官方提供的MNIST數據集,具體內容如下表所示: 文件 內容 圖片信息 大小為28*28的灰度手寫數字圖像,數字 ...
轉自:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-2-classifier/#測試模型 下載數據: # download the mnist to the path '~/.keras/datasets ...