卷積的目的是為了從輸入中提取有用的特征。在圖像處理中,有很多濾波器可以供我們選擇。每一種濾波器幫助我們提取不同的特征。比如水平/垂直/對角線邊緣等等。在CNN中,通過卷積提取不同的特征,濾波器的權重在訓練期間自動學習。然后將所有提取到的特征“組合”以作出決定。 卷積的優勢在於,權重共享和平 ...
本文主要參考來源:圖像處理其實很簡單 線性濾波和卷積的關系:線性濾波可以說是圖像處理最基本的方法,它可以允許我們對圖像進行處理,產生很多不同的效果。做法很簡單。首先,我們有一個二維的濾波器矩陣 有個高大上的名字叫卷積核 和一個要處理的二維圖像。然后,對於圖像的每一個像素點,計算它的鄰域像素和濾波器矩陣的對應元素的乘積,然后加起來,作為該像素位置的值。這樣就完成了濾波過程。 卷積或者協相關:對圖像 ...
2019-01-12 15:26 0 2930 推薦指數:
卷積的目的是為了從輸入中提取有用的特征。在圖像處理中,有很多濾波器可以供我們選擇。每一種濾波器幫助我們提取不同的特征。比如水平/垂直/對角線邊緣等等。在CNN中,通過卷積提取不同的特征,濾波器的權重在訓練期間自動學習。然后將所有提取到的特征“組合”以作出決定。 卷積的優勢在於,權重共享和平 ...
git:https://github.com/linyi0604/Computer-Vision ...
1、池化層的作用 在卷積神經網絡中,卷積層之間往往會加上一個池化層。池化層可以非常有效地縮小參數矩陣的尺寸,從而減少最后全連層中的參數數量。使用池化層即可以加快計算速度也有防止過擬合的作用。 2、為什么max pooling要更常用? 通常來講,max-pooling的效果更好 ...
圖像處理中濾波和卷積是常用到的操作。兩者在原理上相似,但是在實現的細節上存在一些區別。這篇博文主要敘述這兩者之間的區別。 濾波 簡單來說,濾波操作就是圖像對應像素與掩膜(mask)的乘積之和。比如有一張圖片和一個掩膜,如下圖: 那么像素(i,j)的濾波后結果可以根據以 ...
雙邊濾波(Bilateral filter)是一種非線性的濾波方法,是結合圖像的空間鄰近度和像素值相似度的一種折衷處理,同時考慮空域信息和灰度相似性,達到保邊去噪的目的。 雙邊濾波器之所以能夠做到在平滑去噪的同時還能夠很好的保存邊緣(Edge Preserve),是由於其濾波器的核由兩個函數生成 ...
本文主要介紹了高斯濾波器的原理及其實現過程 高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內的像素的均值作為輸出。其窗口模板的系數和均值濾波器不同,均值濾波器的模板系數都是相同的為1;而高斯濾波器的模板系數,則隨着距離模板中心的增大而系數 ...
(k,l)即為卷積核,或者叫濾波器filter. 有幾種常見的filter Normalize ...
。均值濾波器的處理結果是過濾掉圖像中的“不相關”細節,其中“不相關”細節指的是:與濾波器模板尺寸相比較小的 ...