在 機器學習中的貝葉斯方法---先驗概率、似然函數、后驗概率的理解及如何使用貝葉斯進行模型預測(1) 文章中介紹了先驗分布和似然函數,接下來,將重點介紹后驗概率,即通過貝葉斯定理,如何根據先驗分布和似然函數,求解后驗概率。 在這篇文章中,我們通過最大化似然函數求得的參數 r 與硬幣的拋擲 ...
看了好多書籍和博客,講先驗后驗 貝葉斯公式 兩大學派 概率模型 或是邏輯回歸,講的一個比一個清楚 ,但是聯系起來卻理解不能 基本概念如下 先驗概率:一個事件發生的概率 P y 后驗概率:一個事件在另一個事件發生條件下的條件概率 P y x 貝葉斯公式:聯合概率公式直接能推導出來的,代表什么意義 不放在具體問題中代表不了任何意義 P y x frac P x y P y P x 拿一個實際的例子,如 ...
2018-10-20 00:07 0 1330 推薦指數:
在 機器學習中的貝葉斯方法---先驗概率、似然函數、后驗概率的理解及如何使用貝葉斯進行模型預測(1) 文章中介紹了先驗分布和似然函數,接下來,將重點介紹后驗概率,即通過貝葉斯定理,如何根據先驗分布和似然函數,求解后驗概率。 在這篇文章中,我們通過最大化似然函數求得的參數 r 與硬幣的拋擲 ...
一,本文將基於“獨立重復試驗---拋硬幣”來解釋貝葉斯理論中的先驗概率、似然函數和后驗概率的一些基礎知識以及它們之間的關系。 本文是《A First Course of Machine Learning》的第三章的學習筆記,在使用貝葉斯方法構造模型並用它進行預測時,總體思路是:在已知的先驗知識 ...
機器學習基礎 目錄 機器學習基礎 1. 概率和統計 2. 先驗概率(由歷史求因) 3. 后驗概率(知果求因) 4. 似然函數(由因求果) 5. 有趣的野史--貝葉斯和似然之爭-最大似然概率(MLE)-最大后驗概率(MAE ...
聯合概率的乘法公式: (如果隨機變量是獨立的,則) 由乘法公式可得條件概率公式:, , 全概率公式:,其中 (,則,則可輕易推導出上式) 貝葉斯公式: 又名后驗概率公式、逆概率公式:后驗概率=似然函數×先驗概率/證據因子。解釋如下,假設 ...
這個文章的目的是為了加強對這幾個概念的理解與記憶。 怕自己不知道什么時候又忘了。 看自己寫的東西總應該好理解記憶一些吧。 聯合概率的乘法公式: (當隨機變量x,y獨立,則) 這太簡單了是吧。。。。 聯合概率公式變個形,得到條件概率公式為: , 全概率公式 ...
全部定義 邊際似然 marginal likelihood (ML) 邊際似然計算算法實例 《Marginal likelihood calculation with MCMC methods 》 參考Haasteren R V . Marginal ...
朴素貝葉斯法,就是使用貝葉斯公式的學習方法,朴素就是它假設輸入變量(向量)的各個分量之間是相互獨立的。所以對於分量之間不獨立的分布,如果使用它學習和預測效果就不會很好。 簡化策略 它是目標是通過訓練數據集學習聯合概率分布$P(X, Y)$用來預測。書上說,具體是先學習到先驗概率 ...
二、朴素貝葉斯分類器 1、相關三概率 給定 N 個類別,設隨機樣本向量x={x1,x2,…,xd} ,相關的三個概率: (1)先驗概率P(c) :根據以前的知識和經驗得出的c類樣本出現的概率,與現在無關。 (2)后驗概率P(c|x) :相對於先驗概率而言,表示x 屬於c類的概率 ...