在神經網絡中,有許多超參數需要設置,比如學習率,網絡層數,神經元節點數 所謂超參數,就是不需要訓練的參數,需要人為設定的參數。 這些超參數對模型的訓練和性能都有很大影響,非常重要,那么這些超參數該怎么設定呢? 一般我們可以根據經驗來設定,但是經驗畢竟有限,而且也不科學。 驗證數據 ...
Hyperparameter Sweep面臨的問題 在進行Hyperparameter Sweep的時候,我們需要根據許多不同的超參數組合進行不同的訓練,為同一模型進行多次訓練需要消耗大量計算資源或者耗費大量時間。 如果根據不同的超參數並行進行訓練,這需要大量計算資源。 如果在固定計算資源上順序進行所有不同超參數組合對應的訓練,這需要花費大量時間完成所有組合對應的訓練。 因此在落地時中,大多數人通 ...
2018-09-14 22:01 0 911 推薦指數:
在神經網絡中,有許多超參數需要設置,比如學習率,網絡層數,神經元節點數 所謂超參數,就是不需要訓練的參數,需要人為設定的參數。 這些超參數對模型的訓練和性能都有很大影響,非常重要,那么這些超參數該怎么設定呢? 一般我們可以根據經驗來設定,但是經驗畢竟有限,而且也不科學。 驗證數據 ...
內容概要¶ 如何使用K折交叉驗證來搜索最優調節參數 如何讓搜索參數的流程更加高效 如何一次性的搜索多個調節參數 在進行真正的預測之前,如何對調節參數進行處理 如何削減該過程的計算代價 1. K折交叉驗證回顧¶ 交叉驗證的過程 選擇K的值(一般是10 ...
內容概要¶ 如何使用K折交叉驗證來搜索最優調節參數 如何讓搜索參數的流程更加高效 如何一次性的搜索多個調節參數 在進行真正的預測之前,如何對調節參數進行處理 如何削減該過程的計算代價 ...
基本使用 參數不沖突 參數不沖突時,直接用一個字典傳遞參數和要對應的候選值給GridSearchCV即可 我這里的參數沖突指的是類似下面這種情況:① 參數取值受限:參數a='a'時,參數b只能取'b',參數a='A'時,參數b能取'b'或'B'② 參數互斥:參數 a 或 b 二者只能選 ...
本篇主題是我在2015年中國數據庫大會(DTCC)上的分享,擴展事件從2008版本出來到現在已經有6-7年,國內卻很少有相關資料和使用,現在分享一下PPT,希望對大家有所幫助。 ...
JVisualVM 簡介 VisualVM 是Netbeans的profile子項目,已在JDK6.0 update 7 中自帶,能夠監控線程,內存情況,查看方法的CPU時間和內存中的對 象,已被G ...
超參數優化 Bayesian Optimization使用Hyperopt進行參數調優 1. 前言 本文將介紹一種快速有效的方法用於實現機器學習模型的調參。有兩種常用的調參方法:網格搜索和隨機搜索。每一種都有自己的優點和缺點。網格搜索速度慢,但在搜索整個搜索空間方面效果很好,而隨機搜索很快 ...
$ /proc/sys/net/core/wmem_max 最大socket寫buffer,可參考的優化值:873200 $ /proc/sys/net/core/rmem_max 最 ...