原文:激活函數(relu,prelu,elu,+BN)對比on cifar10

激活函數 relu,prelu,elu, BN 對比on cifar 可參考上一篇: 激活函數 ReLU LReLU PReLU CReLU ELU SELU 的定義和區別 一 理論基礎 . 激活函數 . elu論文 FAST AND ACCURATE DEEP NETWORK LEARNING BY EXPONENTIAL LINEAR UNITS ELUS . . 摘要 論文中提到,elu函 ...

2018-09-14 15:03 0 5850 推薦指數:

查看詳情

激活函數ReLU、Leaky ReLUPReLU和RReLU

激活函數”能分成兩類——“飽和激活函數”和“非飽和激活函數”。 sigmoid和tanh是“飽和激活函數”,而ReLU及其變體則是“非飽和激活函數”。使用“非飽和激活函數”的優勢在於兩點: 1.首先,“非飽和激活函數”能解決所謂的“梯度消失”問題。 2.其次,它能加快收斂速度 ...

Thu Mar 29 01:41:00 CST 2018 0 10928
[轉]激活函數ReLU、Leaky ReLUPReLU和RReLU

激活函數”能分成兩類——“飽和激活函數”和“非飽和激活函數”。 sigmoid和tanh是“飽和激活函數”,而ReLU及其變體則是“非飽和激活函數”。使用“非飽和激活函數”的優勢在於兩點: 1.首先,“非飽和激活函數”能解決所謂的“梯度消失”問題。 2.其次,它能加快收斂速度 ...

Sat Sep 22 03:50:00 CST 2018 0 3919
激活函數ReLU、Leaky ReLUPReLU和RReLU

激活函數”能分成兩類——“飽和激活函數”和“非飽和激活函數”。 sigmoid和tanh是“飽和激活函數”,而ReLU及其變體則是“非飽和激活函數”。使用“非飽和激活函數”的優勢在於兩點: 1.首先,“非飽和激活函數”能解決所謂的“梯度消失”問題。 2.其次,它能加快收斂速度 ...

Wed Nov 17 01:47:00 CST 2021 0 1796
常用激活函數:Sigmoid、Tanh、Relu、Leaky ReluELU優缺點總結

1、激活函數的作用 什么是激活函數?   在神經網絡中,輸入經過權值加權計算並求和之后,需要經過一個函數的作用,這個函數就是激活函數(Activation Function)。 激活函數的作用?   首先我們需要知道,如果在神經網絡中不引入激活函數,那么在該網絡 ...

Sat Jun 19 00:50:00 CST 2021 0 452
ReLU激活函數

參考:https://blog.csdn.net/cherrylvlei/article/details/53149381 首先,我們來看一下ReLU激活函數的形式,如下圖:    單側抑制,當模型增加N層之后,理論上ReLU神經元的激活率將降低2的N次方倍, ReLU實現 ...

Thu Oct 10 19:20:00 CST 2019 0 1794
ReLU激活函數的缺點

訓練的時候很”脆弱”,很容易就”die”了,訓練過程該函數不適應較大梯度輸入,因為在參數更新以后,ReLU的神經元不會再有激活的功能,導致梯度永遠都是零。 例如,一個非常大的梯度流過一個 ReLU 神經元,更新過參數之后,這個神經元再也不會對任何數據有激活現象了,那么這個神經元的梯度就永遠 ...

Thu Jun 28 03:42:00 CST 2018 0 5528
relu6激活函數

relu6 = min(max(features, 0), 6) This is useful in making the networks ready for fixed-point inference. If you unbound the upper limit, you lose too ...

Tue May 08 06:30:00 CST 2018 0 6662
激活函數Relu的優點

激活函數Relu的優點   1.可以使網絡訓練更快   2.增加網絡的非線性   3.防止梯度消失(彌散)   4.使網絡具有稀疏性 Dropout層:   作用:隨機將一定比例的神經元置為0 神經網絡處理圖像分類的流程: 訓練階段:   ...

Fri Nov 22 22:51:00 CST 2019 0 732
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM