流式(streaming)和批量( batch):流式數據,實際上更准確的說法應該是unbounded data(processing),也就是無邊界的連續的數據的處理;對應的批量計算,更准確的說法是bounded data(processing),亦即有明確邊界的數據的處理。 近年 ...
簡介 Structured Streaming is a scalable and fault tolerant stream processing engine built on the Spark SQL engine. You can express your streaming computation the same way you would express a batch compu ...
2018-08-12 16:37 0 1059 推薦指數:
流式(streaming)和批量( batch):流式數據,實際上更准確的說法應該是unbounded data(processing),也就是無邊界的連續的數據的處理;對應的批量計算,更准確的說法是bounded data(processing),亦即有明確邊界的數據的處理。 近年 ...
一.概述 Structured Streaming是一個可擴展、容錯的流處理引擎,建立在Spark SQL引擎之上。開發者可以用離線批處理數據相同的表示來表示流計算的邏輯,並且保持其邏輯的一致性(流批一體)。Spark SQL引擎會處理好增量連續運行,並隨着流式數據的接收持續更新最終結果。開發者 ...
1. 流處理的場景 我們在定義流處理時,會認為它處理的是對無止境的數據集的增量處理。不過對於這個定義來說,很難去與一些實際場景關聯起來。在我們討論流處理的優點與缺點時,先介紹一下流處理的常用場景。 ...
5. 實戰Structured Streaming 5.1. Static版本 先讀一份static 數據: val static = spark.read.json("s3://xxx/data/activity-data/") static.printSchema root ...
Streaming APIs Structured Streaming Basics ...
簡介 Spark Streaming Spark Streaming是spark最初的流處理框架,使用了微批的形式來進行流處理。 提供了基於RDDs的Dstream API,每個時間間隔內的數據為一個RDD,源源不斷對RDD進行處理來實現流計算 Structured Streaming ...
簡介 Spark Streaming Spark Streaming是spark最初的流處理框架,使用了微批的形式來進行流處理。 提供了基於RDDs的Dstream API,每個時間間隔內的數據為一個RDD,源源不斷對RDD進行處理來實現流計算。 Structured ...
Spark Struntured Streaming是Spark 2.1.0版本后新增加的流計算引擎,本博將通過幾篇博文詳細介紹這個框架。這篇是介紹Spark Structured Streaming的基本開發方法。以Spark 自帶的example進行測試和介紹,其為 ...