回歸:過擬合情況 / 分類過擬合 防止過擬合的方法有三種: 1 增加數據集 2 添加正則項 3 Dropout,意思就是訓練的時候隱層神經元每次隨機抽取部分參與訓練。部分不參與 最后對之前普通神經網絡分類mnist數據集的代碼進行優化,初始化權重參數的時候采用 ...
思路: 調用數據集 定義用來實現神經元功能的函數 包括解決過擬合 定義輸入和輸出的數據 定義隱藏層 函數 和輸出層 函數 分析誤差和優化數據 改變權重 執行神經網絡 import tensorflow as tffrom sklearn.datasets import load digitsfrom sklearn.model selection import train test splitf ...
2018-08-06 19:50 0 1168 推薦指數:
回歸:過擬合情況 / 分類過擬合 防止過擬合的方法有三種: 1 增加數據集 2 添加正則項 3 Dropout,意思就是訓練的時候隱層神經元每次隨機抽取部分參與訓練。部分不參與 最后對之前普通神經網絡分類mnist數據集的代碼進行優化,初始化權重參數的時候采用 ...
解決擬合與過擬合問題的方法: 一、網絡層數選擇 代碼如下: 5種網絡層數的擬合效果如下: 可知網絡層數為1,擬合結果較為合理 二、Dropout的影響 代碼如下: 結果如下圖所示: dropout訓練斷開一定網絡連接,避免過擬合,測試時連接 ...
本篇主要總結1.二分類邏輯回歸簡單介紹 , 2.算法的實現 3.對欠擬合問題的解決方法及實現(第二部分) 1.邏輯回歸 邏輯回歸主要用於非線性分類問題。具體思路是首先對特征向量進行權重分配之后用 sigmoid 函數激活。如下公式(1)(2) : h > 0.5時,分類為1。h ...
import numpyimport tensorflow as tf #自己創建的數據x_data = numpy.random.rand(100).astype(numpy.float32)#創建具有100個元素的數組y_data = x_data*0.1+0.3#具有自動遍歷的功能 ...
神經網絡的復雜度 1.空間復雜度 層數 = 隱藏層的層數 + 1個輸出層 總參數 = 總w + 總b 2.時間復雜度 乘加運算次數 = 總w 指數衰減學習率 學習率lr表征了參數每次更新的幅度,設置過小,參數更新會很慢,設置過大,參數不容易收斂 ...
《從鍋爐工到AI專家(6)》一文中,我們把神經網絡模型降維,簡單的在二維空間中介紹了過擬合和欠擬合的現象和解決方法。但是因為條件所限,在該文中我們只介紹了理論,並沒有實際觀察現象和應對。 現在有了TensorFLow 2.0 / Keras的支持,可以非常容易的構建模型。我們可以方便的人 ...
,然后使用該模型去擬合未來的數據。 在我們機器學習和深度學習的訓練過程中,經常會出現過擬合和欠擬合的現象。訓 ...
過擬合、欠擬合及其解決方案 過擬合、欠擬合的概念 權重衰減 丟棄法 模型選擇、過擬合和欠擬合 訓練誤差和泛化誤差 在解釋上述現象之前,我們需要區分訓練誤差(training error)和泛化誤差 ...