我們可以通過卷積和池化等技術可以將圖像進行降維,因此,一些研究人員也想辦法恢復原分辨率大小的圖像,特別是在語義分割領域應用很成熟。通過對一些資料的學習,簡單的整理下三種恢復方法,並進行對比。 1、上采樣(Upsampling)[沒有學習過程] 在FCN、U-net等網絡結構中,涉及到了上采樣 ...
Plese see thisanswerfor a detailed example of howtf.nn.conv d backprop inputandtf.nn.conv d backprop filterin an example. Intf.nn, there are closely related d conv functions: tf.nn.conv d tf.nn.conv ...
2018-07-25 21:07 0 1758 推薦指數:
我們可以通過卷積和池化等技術可以將圖像進行降維,因此,一些研究人員也想辦法恢復原分辨率大小的圖像,特別是在語義分割領域應用很成熟。通過對一些資料的學習,簡單的整理下三種恢復方法,並進行對比。 1、上采樣(Upsampling)[沒有學習過程] 在FCN、U-net等網絡結構中,涉及到了上采樣 ...
反卷積、上采樣、上池化圖示理解,如上所示。 目前使用得最多的deconvolution有2種。 方法1:full卷積, 完整的卷積可以使得原來的定義域變大 上圖中藍色為原圖像,白色為對應卷積所增加的padding,通常全部為0,綠色是卷積后圖片。卷積的滑動是從卷積核右下角與圖片左上角重疊 ...
unpooling (摘自https://www.bilibili.com/video/av15889450/?p=33,第30分鍾) unpooling有很多種方法,其中一種如下圖: De ...
反卷積是指,通過測量輸出和已知輸入重構未知輸入的過程。在神經網絡中,反卷積過程並不具備學習的能力,僅僅是用於可視化一個已經訓練好的卷積神經網絡,沒有學習訓練的過程。反卷積有着許多特別的應用,一般可以用於信道均衡、圖像恢復、語音識別、地震學、無損探傷等未知輸入估計和過程辨識方面的問題。 在神經網絡 ...
一、前向計算和反向傳播數學過程講解 這里講解的是平均池化層,最大池化層見本文第三小節 二、測試代碼 數據和上面完全一致,自行打印驗證即可。 1、前向傳播 import tensorflow as tf import numpy as np # 輸入張量為3×3的二維矩陣 M ...
還是分布式設備上的實現效率都受到一致認可。 CNN網絡中的卷積和池化層應該怎么設置呢?tf相應的函數 ...
恢復特征圖分辨率的方式對比:反卷積,上池化,上采樣 文章目錄 1.(反)卷積- (反)卷積原理- (反)卷積過程 利用 CNN 做有關圖像的任務時,肯定會遇到 需要從低分辨率圖像恢復到到高分辨率圖像 的問題。解決方法目前無非就是 1)插值,2)反卷積 一般 上采樣 ...
構建了最簡單的網絡之后,是時候再加上卷積和池化了。這篇,雖然我還沒開始構思,但我知道,一 ...