原文:機器學習中常見的過擬合解決方法

在機器學習中,我們將模型在訓練集上的誤差稱之為訓練誤差,又稱之為經驗誤差,在新的數據集 比如測試集 上的誤差稱之為泛化誤差,泛化誤差也可以說是模型在總體樣本上的誤差。對於一個好的模型應該是經驗誤差約等於泛化誤差,也就是經驗誤差要收斂於泛化誤差,根據霍夫丁不等式可知經驗誤差在一定條件下是可以收斂於泛化誤差的。 當機器學習模型對訓練集學習的太好的時候 再學習數據集的通性的時候,也學習了數據集上的特性 ...

2018-07-08 20:38 0 14281 推薦指數:

查看詳情

機器學習中常見優化方法匯總

http://www.scipy-lectures.org/advanced/mathematical_optimization/index.html#a-review-of-the-different-optimizers 機器學習中數學優化專門用於解決尋找一個函數的最小值的問題。這里的函數 ...

Sun Aug 26 04:46:00 CST 2018 0 3064
機器學習筆記之機器學習中常見的9種距離度量方法

0x00 概述 在數據挖掘中,我們經常需要計算樣本之間的相似度,通常的做法是計算樣本之間的距離。 在本文中,數據科學家 Maarten Grootendorst 向我們介紹了 9 種距離度量方法,其中包括歐氏距離、余弦相似度等。 許多算法,無論是監督學習還是無監督學習,都會使用距離度量 ...

Wed Feb 24 07:10:00 CST 2021 0 285
機器學習中常見的損失函數

  損失函數是機器學習中常用於優化模型的目標函數,無論是在分類問題,還是回歸問題,都是通過損失函數最小化來求得我們的學習模型的。損失函數分為經驗風險損失函數和結構風險損失函數。經驗風險損失函數是指預測結果和實際結果的差別,結構風險損失函數是指經驗風險損失函數加上正則項。通常 ...

Mon Jul 02 04:34:00 CST 2018 0 2050
機器學習中常見的損失函數

損失函數是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風 ...

Fri Apr 27 09:14:00 CST 2018 0 7121
機器學習中常見的距離公式

機器學習、人工智能領域常用的距離計算公式。 曼哈頓距離 曼哈頓距離又稱“計程車距離”,由十九世紀的赫爾曼·閔可夫斯基所創。點\(P_1(x_1,y_1)\)和\(P_2(x_2,y_2)\)的距離如下: \[distance(P_1,P_2)=|x_2-x_1|+|y_2-y_1 ...

Wed Oct 10 00:05:00 CST 2018 0 2568
機器學習中防止過擬合方法

擬合   在進行數據挖掘或者機器學習模型建立的時候,因為在統計學習中,假設數據滿足獨立同分布,即當前已產生的數據可以對未來的數據進行推測與模擬,因此都是使用歷史數據建立模型,即使用已經產生的數據去訓練,然后使用該模型去擬合未來的數據。但是一般獨立同分布的假設往往不成立,即數據的分布可能會 ...

Sat Jul 22 19:15:00 CST 2017 0 5483
機器學習中常見的幾種損失函數

     通常機器學習每一個算法中都會有一個目標函數,算法的求解過程是通過對這個目標函數優化的過程。在分類或者回歸問題中,通常使用損失函數(代價函數)作為其目標函數。損失函數用來評價模型的預測值和真實值不一樣的程度,損失函數越好,通常模型的性能越好。不同的算法使用的損失函數不一樣。   損失 ...

Mon Jan 01 04:38:00 CST 2018 0 19261
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM