1. 特征工程之特征預處理 2. 特征工程之特征選擇 1. 前言 “數據決定了機器學習的上限,而算法只是盡可能逼近這個上限”,這里的數據指的就是經過特征工程得到的數據。特征工程指的是把原始數據轉變為模型的訓練數據的過程,它的目的就是獲取更好的訓練數據特征,使得機器學習模型逼近這個上限。特征 ...
在前面我們分別討論了特征工程中的特征選擇與特征表達,本文我們來討論特征預處理的相關問題。主要包括特征的歸一化和標准化,異常特征樣本清洗與樣本數據不平衡問題的處理。 . 特征的標准化和歸一化 由於標准化和歸一化這兩個詞經常混用,所以本文不再區別標准化和歸一化,而通過具體的標准化和歸一化方法來區別具體的預處理操作。 z score標准化:這是最常見的特征預處理方式,基本所有的線性模型在擬合的時候都會 ...
2018-05-26 20:23 102 17762 推薦指數:
1. 特征工程之特征預處理 2. 特征工程之特征選擇 1. 前言 “數據決定了機器學習的上限,而算法只是盡可能逼近這個上限”,這里的數據指的就是經過特征工程得到的數據。特征工程指的是把原始數據轉變為模型的訓練數據的過程,它的目的就是獲取更好的訓練數據特征,使得機器學習模型逼近這個上限。特征 ...
目錄 數據挖掘的五大流程 數據預處理(preprocessing) 數據歸一化 數據標准化 缺失值處理 處理離散型特征和非數值型標簽 處理連續型特征 二值化 分箱 ...
基礎概念 特征工程是通過對原始數據的處理和加工,將原始數據屬性通過處理轉換為數據特征的過程,屬性是數據本身具有的維度,特征是數據中所呈現出來的某一種重要的特性,通常是通過屬性的計算,組合或轉換得到的。比如主成分分析就是將大量的數據屬性轉換為少數幾個特征的過程。某種程度而言,好的數據以及特征往往是 ...
小伙伴們大家好~o( ̄▽ ̄)ブ,沉寂了這么久我又出來啦,這次先不翻譯優質的文章了,這次我們回到Python中的機器學習,看一下Sklearn中的數據預處理和特征工程,老規矩還是先強調一下我的開發環境是Jupyter lab,所用的庫和版本大家參考: Python 3.7.1(你的版本至少 ...
https://www.deeplearn.me/1389.html 上一篇文章講解了區間縮放法處理數據,接下來就講解二值化處理 這個應該很簡單了,從字面意思就是將數據分為 0 或者 1,聯想到之前圖像處理里面二值化處理變為黑白圖片 下面還是進入主題吧 首先給出當前的二值化處理公式 ...
https://www.deeplearn.me/1393.html 啞編碼概念 先來講解下啞編碼的概念吧,當你的變量不是定量特征的時候是無法拿去進行訓練模型的,啞編碼主要是針對定性的特征進行處理然后得到可以用來訓練的特征 關於定性和定量還是在這里也說明下,舉個例子就可以看懂了 定性 ...
特征工程系列:特征預處理(下) 本文為數據茶水間群友原創,經授權在本公眾號發表。 關於作者:JunLiang,一個熱愛挖掘的數據從業者,勤學好問、動手達人,期待與大家一起交流探討機器學習相關內容~ 0x00 前言 數據預處理包含數據探索、數據清洗和特征預處理三部分,《特征工程系列:特征 ...
、數據處理 特征工程包含如下3個內容: 1、特征抽取/特征提取 ...