from:https://zhuanlan.zhihu.com/p/30461746 本項目需解決的問題 本項目通過利用信用卡的歷史交易數據,進行機器學習,構建信用卡反欺詐預測模型,提前發現客戶信用卡被盜刷的事件。 建模思路 項目背景 數據集包含由歐洲持卡人 ...
先看數據: 特征如下: Time Number of seconds elapsed between each transaction over two days numeric V No description provided numeric V No description provided numeric V No description provided numeric V No de ...
2018-05-25 10:47 5 5696 推薦指數:
from:https://zhuanlan.zhihu.com/p/30461746 本項目需解決的問題 本項目通過利用信用卡的歷史交易數據,進行機器學習,構建信用卡反欺詐預測模型,提前發現客戶信用卡被盜刷的事件。 建模思路 項目背景 數據集包含由歐洲持卡人 ...
總結:不平衡數據的分類,(1)數據層面:使用過采樣是主流,過采樣通常使用smote,或者少數使用數據復制。過采樣后模型選擇RF、xgboost、神經網絡能夠取得非常不錯的效果。(2)模型層面:使用模型集成,樣本不做處理,將各個模型進行特征選擇、參數調優后進行集成,通常也能夠取得 ...
In [2]: ...
本文是對100天搞定機器學習|Day33-34 隨機森林的補充 前文對隨機森林的概念、工作原理、使用方法做了簡單介紹,並提供了分類和回歸的實例。 本期我們重點講一下: 1、集成學習、Bagging和隨機森林概念及相互關系 2、隨機森林參數解釋及設置建議 3、隨機森林模型調參實戰 4、隨機森林模型 ...
首先,看下Smote算法之前,我們先看下當正負樣本不均衡的時候,我們通常用的方法: 抽樣 常規的包含過抽樣、欠抽樣、組合抽樣 過抽樣:將樣本較少的一類sample補齊 欠抽樣:將樣本較多的一類sample壓縮 組合抽樣:約定一個量級N,同時進行過抽樣和欠抽樣,使得正負樣本量和等於 ...
一、業務背景 日常工作、比賽的分類問題中常遇到類別型的因變量存在嚴重的偏倚,即類別之間的比例嚴重失調。 樣本量差距過大會導致建模效果偏差。 例如邏輯回歸不適合處理類別不平衡問題,會傾向於將樣本判定為大多數類別,雖然能達到很高的准確率,但是很低的召回率。 出現樣本不均衡場景主要有 ...
為什么要對特征進行歸一化? 一句話描述:1)歸一化后加快了梯度下降求最優解的速度 2)歸一化有可能提高精度 1:歸一化后加快了梯度下降求最優解的速度 藍色的圈圈圖代表的是兩個特征的等高線。其中左圖兩個特征X1和X2的區間相差非常大,X1區間 ...
寫在jupyter里面比較漂亮: https://douzujun.github.io/page/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/%E7%B1%BB%E4%B8%8D%E5%B9%B3%E8%A1%A1%E9%97 ...