模型選擇的標准是盡可能地貼近樣本真實的分布。但是在有限的樣本下,如果我們有多個可選模型,比如從簡單到復雜,從低階到高階,參數由少到多。那么我們怎么選擇模型呢,是對訓練樣本的擬合度越好就可以嗎?顯然不是,因為這樣做的話只會讓我們最終選擇出最復雜,最高階的模型。而這個模型的問題是過擬合 ...
基礎概念 特征工程是通過對原始數據的處理和加工,將原始數據屬性通過處理轉換為數據特征的過程,屬性是數據本身具有的維度,特征是數據中所呈現出來的某一種重要的特性,通常是通過屬性的計算,組合或轉換得到的。比如主成分分析就是將大量的數據屬性轉換為少數幾個特征的過程。某種程度而言,好的數據以及特征往往是一個性能優秀模型的基礎。 既然叫特征工程,自然涵蓋了很多內容,而其中涉及到的比較重要的部分是特征的處理 ...
2018-04-26 22:59 0 28998 推薦指數:
模型選擇的標准是盡可能地貼近樣本真實的分布。但是在有限的樣本下,如果我們有多個可選模型,比如從簡單到復雜,從低階到高階,參數由少到多。那么我們怎么選擇模型呢,是對訓練樣本的擬合度越好就可以嗎?顯然不是,因為這樣做的話只會讓我們最終選擇出最復雜,最高階的模型。而這個模型的問題是過擬合 ...
來源:https://www.zhihu.com/question/29316149/answer/110159647 目錄 1 特征工程是什么?2 數據預處理 2.1 無量綱化 2.1.1 標准化 2.1.2 區間縮放法 2.1.3 標准化與歸一化的區別 ...
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the opti ...
來源地址:https://www.cnblogs.com/bjwu/p/9103002.html Filter-移除低均方差的特征 代碼: from sklearn.feature_selection import VarianceThreshold X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1 ...
引言 之前了解到決策樹在選擇最好的特征進行數據集的划分就說到這種方法可以用來進行特征選擇,然后看了breiman主頁上相關的介紹,覺得這不愧是權威啊,不愧是隨機森林算法的提出者,講的很清楚,網址如下 http://www.stat.berkeley.edu ...
特征選擇是一個重要的數據預處理過程,在現實機器學習任務中,獲得數據之后通常先進行特征選擇,此后在訓練學習器,如下圖所示: 進行特征選擇有兩個很重要的原因: 避免維數災難:能剔除不相關(irrelevant)或冗余(redundant )的特征,從而達到減少特征個數,提高模型精確度,減少 ...
1.特征選擇 特征選擇是降維的一種方法,即選擇對預測結果相關度高的特征或者消除相似度高的特征,以提高估計函數的准確率或者提高多維度數據集上的性能。 2.刪除低方差特征 1)思路:設置一個閥值,對每個特征求方差,如果所求方差低於這個閥值,則刪除此特征 ...
特征選擇方法初識: 1、為什么要做特征選擇在有限的樣本數目下,用大量的特征來設計分類器計算開銷太大而且分類性能差。2、特征選擇的確切含義將高維空間的樣本通過映射或者是變換的方式轉換到低維空間,達到降維的目的,然后通過特征選取刪選掉冗余和不相關的特征來進一步降維。3、特征選取的原則獲取盡可能小 ...