數據倉庫分層 1、介紹 數據倉庫更多代表的是一種對數據的管理和使用的方式,它是一整套包括了etl、調度、建模在內的完整的理論體系。現在所謂的大數據更多的是一種數據量級的增大和工具的上的更新。 兩者並無沖突,相反,而是一種更好的結合。數據倉庫在構建過程中通常都需要進行分層處理。業務不同,分層 ...
數據倉庫標准上可以分為四層:ODS 臨時存儲層 PDW 數據倉庫層 MID 數據集市層 APP 應用層 ODS層: 為臨時存儲層,是接口數據的臨時存儲區域,為后一步的數據處理做准備。一般來說ODS層的數據和源系統的數據是同構的,主要目的是簡化后續數據加工處理的工作。從數據粒度上來說ODS層的數據粒度是最細的。ODS層的表通常包括兩類,一個用於存儲當前需要加載的數據,一個用於存儲處理完后的歷史數據。 ...
2017-11-28 15:01 0 4679 推薦指數:
數據倉庫分層 1、介紹 數據倉庫更多代表的是一種對數據的管理和使用的方式,它是一整套包括了etl、調度、建模在內的完整的理論體系。現在所謂的大數據更多的是一種數據量級的增大和工具的上的更新。 兩者並無沖突,相反,而是一種更好的結合。數據倉庫在構建過程中通常都需要進行分層處理。業務不同,分層 ...
1、為什么要分層 在未分層的情況下,數據之間的耦合性與業務耦合性是不可避免的,當源業務系統的業務規則發生變化時,可能影響整個數據的清洗過程。這就好比把襯衫、褲子、襪子、外套分類存放整理 就比 打散之后不分類的整理哪一種更讓人舒服,更容易找呢? 2、分層的好處 數據分層簡化了數據清洗的過程 ...
如何分層 結合Inmon和Kimball的集線器式和總線式的數據倉庫的優點,分層為ODS【-MID】-DW-DM-OLAP/OLAM/app ODS層是將OLTP數據通過ETL同步到數據倉庫來作為數據倉庫最基礎的數據來源。在這個過程中,數據經過了一定的清洗,比如字段的統一 ...
為什么要對數據倉庫分層? 用空間換時間,通過大量的預處理來提升應用系統的用戶體驗(效率),因此數據倉庫會存在大量冗余的數據; 如果不分層的話,如果源業務系統的業務規則發生變化將會影響整個數據清洗過程,工作量巨大 通過數據分層管理可以簡化數據清洗的過程,因為把原來一步的工作分到了多個 ...
周末閑下來,畫了幅目前主流的數據倉庫的分層結構。 ...
數據層的存儲一般如下: Data Source 數據源一般是業務庫和埋點,當然也會有第三方購買數據等多種數據來源方式。業務庫的存儲一般是Mysql 和 PostgreSql。 ODS 層 ODS 的數據量一般非常大,所以大多數公司會選擇存在HDFS上,即Hive ...
是數據倉庫的主要應用,支持復雜的分析查詢,側重決策支持1、實時性要求不是很高, ETL 一般都是 T+1 的數 ...
從低往高層: ODS>DWD,DWS>DM ODS:Operation Data Store 原始數據,業務庫數據,日志數據,mongodb等數據源,api抓取,gio DWD(數據清洗/DWI) data warehouse detail 數據明細詳情,去除空值,臟數據,超過 ...