0 前言 上"多媒體通信"課,老師講到了信息論中的一些概念,看到交叉熵,想到這個概念經常用在機器學習中的損失函數中。 這部分知識算是機器學習的先備知識,所以查資料加深一下理解。 1 信息熵的抽象定義 熵的概念最早由統計熱力學引入。 信息熵是由信息論之父香農提出來的,它用於隨機變量 ...
機器學習中經常遇到這幾個概念,用大白話解釋一下: 一 歸一化 把幾個數量級不同的數據,放在一起比較 或者畫在一個數軸上 ,比如:一條河的長度幾千甚至上萬km,與一個人的高度 . m,放在一起,人的高度幾乎可以被忽略,所以為了方便比較,縮小他們的差距,但又能看出二者的大小關系,可以找一個方法進行轉換。 另外,在多分類預測時,比如:一張圖,要預測它是貓,或是狗,或是人,或是其它什么,每個分類都有一個預 ...
2017-11-15 23:16 3 14658 推薦指數:
0 前言 上"多媒體通信"課,老師講到了信息論中的一些概念,看到交叉熵,想到這個概念經常用在機器學習中的損失函數中。 這部分知識算是機器學習的先備知識,所以查資料加深一下理解。 1 信息熵的抽象定義 熵的概念最早由統計熱力學引入。 信息熵是由信息論之父香農提出來的,它用於隨機變量 ...
一、信息熵 若一個離散隨機變量 \(X\) 的可能取值為 \(X = \{ x_{1}, x_{2},...,x_{n}\}\),且對應的概率為: \[p(x_{i}) = p(X=x_{i}) \] 那么隨機變量 \(X\) 的熵定義為: \[H(X) = -\sum_{i ...
引言 今天在逛論文時突然看到信息熵這個名詞,我啪的一下就記起來了,很快啊!!這不是我大一第一節信息資源管理概論課講到的第一個專業名詞嗎,信息熵我可熟了,章口就來,信息熵是負熵 .......淦,負熵又是啥。好家伙,一整門課的知識都還給老師了,只記得老師給我們大肆推薦的《JinPingMei ...
摘要: 1.信息的度量 2.信息不確定性的度量 內容: 1.信息的度量 直接給出公式,這里的N(x)是隨機變量X的取值個數,至於為什么這么表示可以考慮以下兩個事實: (1)兩個獨立事件X,Y的聯合概率是可乘的,即,而X,Y同時發生的信息量應該是可加的,即,因此對概率 ...
信息熵 信息量和信息熵的概念最早是出現在通信理論中的,其概念最早是由信息論鼻祖香農在其經典著作《A Mathematical Theory of Communication》中提出的。如今,這些概念不僅僅是通信領域中的基礎概念,也被廣泛的應用到了其他的領域中,比如機器學習。 信息量用來 ...
信息量: 假設X是一個離散型隨機變量,其取值集合為X,概率分布函數為p(x)=Pr(X=x),x∈X,我們定義事件X=x0的信息量為: I(x0)=−log(p(x0)),可以理解為,一個事件發生的概率越大,則它所攜帶的信息量就越小,而當p(x0)=1時,熵將等於0,也就是說該事件的發生不會導致 ...
1 softmax函數 softmax函數的定義為 $$softmax(x)=\frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$ softmax函數的特點有 函數值在[0-1]的范圍之內 所有$softmax(x_i)$相加的總和為1 面對一個 ...
What does the cross-entropy mean? Where does it come from? 交叉熵是什么意思呢?它是從哪里來的? 上一節咱們從代數分析和實際應用對交叉熵進行了介紹,這一節從概念角度介紹下它: 問題1:第一次是怎么想到交叉熵的呢? 假設我們已經知道 ...