一、前述 數據傾斜問題是大數據中的頭號問題,所以解決數據清洗尤為重要,本文只針對幾個常見的應用場景做些分析 。 二。具體方法 1、使用Hive ETL預處理數據 方案適用場景: 如果導致數據傾斜的是Hive表。如果該Hive表中的數據本身很不均勻(比如某個key對應了100 ...
一. 數據傾斜的現象 多數task執行速度較快,少數task執行時間非常長,或者等待很長時間后提示你內存不足,執行失敗。 二. 數據傾斜的原因 常見於各種shuffle操作,例如reduceByKey,groupByKey,join等操作。 數據問題 key本身分布不均勻 包括大量的key為空 key的設置不合理 spark使用問題 shuffle時的並發度不夠 計算方式有誤 三. 數據傾斜的后果 ...
2017-09-29 13:16 0 1663 推薦指數:
一、前述 數據傾斜問題是大數據中的頭號問題,所以解決數據清洗尤為重要,本文只針對幾個常見的應用場景做些分析 。 二。具體方法 1、使用Hive ETL預處理數據 方案適用場景: 如果導致數據傾斜的是Hive表。如果該Hive表中的數據本身很不均勻(比如某個key對應了100 ...
本文首發於 vivo互聯網技術 微信公眾號 https://mp.weixin.qq.com/s/lqMu6lfk-Ny1ZHYruEeBdA 作者簡介:鄭志彬,畢業於華南理工大學計算機科學與技術(雙語班)。先后從事過電子商務、開放平台、移動瀏覽器、推薦廣告和大數據、人工智能 ...
一、數據傾斜 數據傾斜一般發生在對數據進行重新划分以及聚合的處理過程中。執行Spark作業時,數據傾斜一般發生在shuffle過程中,因為Spark的shuffle過程需要進行數據的重新划分處理。在執行shuffle過程中,Spark需要將各個節點上相同key的數據拉取到某個處理節點 ...
Spark性能調優之解決數據傾斜 數據傾斜七種解決方案 shuffle的過程最容易引起數據傾斜 1.使用Hive ETL預處理數據 ...
數據傾斜調優 調優概述 有的時候,我們可能會遇到大數據計算中一個最棘手的問題——數據傾斜,此時Spark作業的性能會比期望差很多。數據傾斜調優,就是使用各種技術方案解決不同類型的數據傾斜問題,以保證Spark作業的性能。 數據傾斜發生時的現象 絕大多數task執行得都非常快,但個別 ...
spark數據傾斜處理 危害: 當出現數據傾斜時,小量任務耗時遠高於其它任務,從而使得整體耗時過大,未能充分發揮分布式系統的並行計算優勢。 當發生數據傾斜時,部分任務處理的數據量過大,可能造成內存不足使得任務失敗,並進而引進整個應用失敗。 表現:同一個 ...
秒殺過程:庫存查驗、庫存扣減和訂單處理:在庫存查驗過程:支撐大量高並發的庫存查驗請求,我們需要在這個環節使用 Redis 保存庫存量,這樣一來,請求可以直接從 Redis 中讀取庫存並進行查驗。 訂單處理可以在數據庫中執行,但庫存扣減操作,不能交給后端數據庫處理。在數據庫中處理訂單的原因比較簡單 ...
一.了解數據傾斜 數據傾斜的原理: 在執行shuffle操作的時候,按照key,來進行values的數據的輸出,拉取和聚合.同一個key的values,一定是分配到一個Reduce task進行處理. 假如多個key對應的values,總共是90萬 ...