原文:使用朴素貝葉斯過濾垃圾郵件

朴素貝葉斯最著名的一個應用:電子郵件垃圾過濾。 准備數據:切分文本 采用正則表達式和split 函數進行,和Java語言的字符串分割基本類似,略去不講 第一個函數傳入一個字符串,將其轉化成字符串列表,並且去掉少於兩個字符的字符串,並將所有字符串轉換為小寫 第二個函數對貝葉斯垃圾郵件分類器進行自動化處理。導入文件夾spam和ham下的文版文件,並將其解析為詞列表。接下來構建一個測試集和一個訓練集,兩 ...

2017-09-14 17:29 1 1823 推薦指數:

查看詳情

朴素_垃圾郵件的識別過濾

待處理的數據為放在兩個文件夾中的各25個txt文本,文本信息為電子郵件內容,文件夾spam中的25個郵件都是正常郵件;ham中的25個郵件垃圾郵件; 利用朴素算法,訓練分類器,采取交叉驗證的方式,結果證明,分類器能夠很好的識別垃圾郵件; 代碼主要參考【機器學習實戰 ...

Thu Nov 03 04:42:00 CST 2016 0 1770
使用朴素算法簡單實現垃圾郵件過濾之算法介紹

一、算法介紹 朴素法,簡稱NB算法,是決策理論的一部分,是基於貝葉斯定理與特征條件獨立假設的分類方法: 首先理解兩個概念: · 先驗概率是指根據以往經驗和分析得到的概率,它往往作為“由因求果”問題中的“因”出現; · 后驗概率是指在得到“結果”的信息后重新修正的概率,是“執果尋 ...

Sun Dec 16 06:07:00 CST 2018 2 2038
朴素應用:垃圾郵件分類

朴素應用:垃圾郵件分類 1. 數據准備:收集數據與讀取 2. 數據預處理:處理數據 3. 訓練集與測試集:將先驗數據按一定比例進行拆分。 4. 提取數據特征,將文本解析為詞向量 。 5. 訓練模型:建立模型,用訓練數據訓練模型。即根據訓練樣本集,計算詞項出現的概率P(xi|y ...

Thu Dec 06 18:27:00 CST 2018 0 695
朴素-垃圾郵件分類實現

1. 前言 《朴素算法(Naive Bayes)》,介紹了朴素原理。本文介紹的是朴素的基礎實現,用來垃圾郵件分類。 2. 朴素斯基礎實現 朴素 (naive Bayes) 法是基於貝葉斯定理與特征條件獨立假設的分類的方法。對於給定的訓練數據集,首先基於特征條件獨立 ...

Mon Jan 28 00:31:00 CST 2019 1 4548
機器學習實戰-朴素垃圾郵件分類

朴素 概念 對朴素的概念存在疑惑的,可以依此理解條件概率,全概率公式和公式。 附鏈接幫助理解: 鏈接1https://blog.csdn.net/Hearthougan/article/details/75174210 鏈接2https ...

Sat May 11 07:50:00 CST 2019 0 1026
機器學習實戰1:朴素模型:文本分類+垃圾郵件分類

  學習了那么多機器學習模型,一切都是為了實踐,動手自己寫寫這些模型的實現對自己很有幫助的,堅持,共勉。本文主要致力於總結實戰中程序代碼的實現(python)及朴素模型原理的總結。python的numpy包簡化了很多計算,另外本人推薦使用pandas做數據統計。 一 引言 ...

Tue Jun 21 06:19:00 CST 2016 6 21442
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM