在TensorFlow中,使用tr.nn.conv2d來實現卷積操作,使用tf.nn.max_pool進行最大池化操作。通過闖傳入不同的參數,來實現各種不同類型的卷積與池化操作。 卷積函數tf.nn.conv2d TensorFlow里使用tf.nn.conv2d函數來實現卷積,其格式 ...
tf.Graph 操作 描述 class tf.Graph tensorflow中的計算以圖數據流的方式表示一個圖包含一系列表示計算單元的操作對象以及在圖中流動的數據單元以tensor對象表現 tf.Graph. init 建立一個空圖 tf.Graph.as default 一個將某圖設置為默認圖,並返回一個上下文管理器如果不顯式添加一個默認圖,系統會自動設置一個全局的默認圖。所設置的默認圖,在 ...
2017-05-25 21:44 0 2499 推薦指數:
在TensorFlow中,使用tr.nn.conv2d來實現卷積操作,使用tf.nn.max_pool進行最大池化操作。通過闖傳入不同的參數,來實現各種不同類型的卷積與池化操作。 卷積函數tf.nn.conv2d TensorFlow里使用tf.nn.conv2d函數來實現卷積,其格式 ...
Tensorflow循環神經網絡 循環神經網絡 梯度消失問題 LSTM網絡 RNN其他變種 用RNN和Tensorflow實現手寫數字分類 一.循環神經網絡 RNN背后的思想就是利用順序信息.在傳統的神經網絡中,我們假設所有輸入(或輸出 ...
√ 神經元模型: 用數學公式表示為: 𝐟(∑xw +b), , f 為激活函數。 神經網絡 是 以神經元為基本單元構成的.√ 激活函數: 引入 非線性 激 活因素,提高模型表達力 常用的激活 函數有 relu 、 sigmoid 、 tanh 等。 激活函數 relu ...
激活函數是人工神經網絡的一個極其重要的特征。它決定一個神經元是否應該被激活,激活代表神經元接收的信息與給定的信息有關。 激活函數對輸入信息進行非線性變換。 然后將變換后的輸出信息作為輸入信息傳給下一層神經元。 激活函數的作用 當我們不用激活函數時,權重和偏差只會進行線性變換。線性方程很簡單 ...
本實驗通過建立一個含有兩個隱含層的BP神經網絡,擬合具有二次函數非線性關系的方程,並通過可視化展現學習到的擬合曲線,同時隨機給定輸入值,輸出預測值,最后給出一些關鍵的提示。 源代碼如下: 運行結果如下: 結果實在是太棒了,把這個關系擬合的非常好。在上述的例子中,需要進一步說 ...
為了參加今年的軟件杯設計大賽,這幾個月學習了很多新知識。現在大賽的第二輪作品優化已經提交,開始對這四個月所學知識做一些總結與記錄。 用TensorFlow搭建神經網絡。TensorFlow將神經網絡的進行封裝,使得深度學習變得簡單已用,即使是不懂的深度學習算法原理的人都可以很容易的搭建 ...
卷積神經網絡(Convolutional Neural Network, CNN)是一種前饋神經網絡, 在計算機視覺等領域被廣泛應用. 本文將簡單介紹其原理並分析Tensorflow官方提供的示例. 關於神經網絡與誤差反向傳播的原理可以參考作者的另一篇博文BP神經網絡與Python實現. 了解 ...