1. Cross entropy 交叉熵損失函數用於二分類損失函數的計算,其公式為: 其中y為真值,y'為估計值.當真值y為1時, 函數圖形: 可見此時y'越接近1損失函數的值越小,越接近0損失函數的值越大. 當真值y為0時, 函數圖形: 可見此時y'越接近0損失 ...
交叉熵損失函數 熵的本質是香濃信息量 log frac p 的期望 既然熵的本質是香濃信息量 log frac p 的期望,那么便有 H p E p i times log frac p i sum p i times log frac p i 一個時間結果的出現概率越低,對其編碼的bit的長度就越長。熵的本質的另一個解釋是編碼方案完美時,最短平均編碼長度的是多少 現在關於樣本集的 個概率分布 p ...
2017-04-28 15:39 1 6494 推薦指數:
1. Cross entropy 交叉熵損失函數用於二分類損失函數的計算,其公式為: 其中y為真值,y'為估計值.當真值y為1時, 函數圖形: 可見此時y'越接近1損失函數的值越小,越接近0損失函數的值越大. 當真值y為0時, 函數圖形: 可見此時y'越接近0損失 ...
交叉熵損失函數的概念和理解 覺得有用的話,歡迎一起討論相互學習~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定義 ...
損失函數:交叉熵 交叉熵用於比較兩個不同概率模型之間的距離。即先把模型轉換成熵這個數值,然后通過數值去定量的比較兩個模型之間的差異。 信息量 信息量用來衡量事件的不確定性,即該事件從不確定轉為確定時的難度有多大。 定義信息量的函數為: \[f(x):=\text{信息量 ...
交叉熵損失是分類任務中的常用損失函數,但是是否注意到二分類與多分類情況下的交叉熵形式上的不同呢? 兩種形式 這兩個都是交叉熵損失函數,但是看起來長的卻有天壤之別。為什么同是交叉熵損失函數,長的卻不一樣? 因為這兩個交叉熵損失函數對應不同的最后一層的輸出:第一個對應的最后一層 ...
【簡介】 交叉熵(Cross Entropy)是Shannon信息論中一個重要概念,主要用於度量兩個概率分布間的差異性信息。語言模型的性能通常用交叉熵和復雜度(perplexity)來衡量。交叉熵的意義是用該模型對文本識別的難度,或者從壓縮的角度來看,每個詞平均要用幾個位來編碼。復雜度的意義 ...
1.MSE(均方誤差) MSE是指真實值與預測值(估計值)差平方的期望,計算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得結果越大,表明預測效果越差,即y和y'相差越大 2.Cross Entropy Loss(交叉熵) 在理解交叉熵之前 ...
交叉熵 分類問題中,預測結果是(或可以轉化成)輸入樣本屬於n個不同分類的對應概率。比如對於一個4分類問題,期望輸出應該為 g0=[0,1,0,0] ,實際輸出為 g1=[0.2,0.4,0.4,0] ,計算g1與g0之間的差異所使用的方法,就是損失函數,分類問題中常用損失函數是交叉熵。 交叉 ...
Cross Entropy Loss Function(交叉熵損失函數) 例子 表達式 函數性質 學習過程 優缺點 這篇文章中,討論的Cross Entropy損失函數常用於分類問題中,但是為什么它會在分類問題中這么有效呢?我們先從一個簡單的分類例子來入手 ...