tensorflow基於 Grammar as a Foreign Language實現,這篇論文給出的公式也比較清楚。 這里關注seq2seq.attention_decode函數, 主要輸入 decoder_inputs, initial_state ...
目前實現了基於tensorflow的支持的帶attention的seq seq。基於tf . 官網contrib路徑下seq seq 由於后續版本不再支持attention,遷移到melt並做了進一步開發,支持完全ingraph的beam search 更快速 以及outgraph的交互式beam search 更靈活 ,其中ougraph的beam search支持alignments的輸出。 ...
2017-03-18 20:59 1 5140 推薦指數:
tensorflow基於 Grammar as a Foreign Language實現,這篇論文給出的公式也比較清楚。 這里關注seq2seq.attention_decode函數, 主要輸入 decoder_inputs, initial_state ...
Seq2seq Seq2seq全名是Sequence-to-sequence,也就是從序列到序列的過程,是近年當紅的模型之一。Seq2seq被廣泛應用在機器翻譯、聊天機器人甚至是圖像生成文字等情境。 seq2seq 是一個Encoder–Decoder 結構的網絡,它的輸入是一個序列,輸出也是 ...
Seq2Seq模型 傳統的機器翻譯的方法往往是基於單詞與短語的統計,以及復雜的語法結構來完成的。基於序列的方式,可以看成兩步,分別是 Encoder 與 Decoder,Encoder 階段就是將輸入的單詞序列(單詞向量)變成上下文向量,然后 decoder根據這個向量來預測翻譯 ...
注意力seq2seq模型 大部分的seq2seq模型,對所有的輸入,一視同仁,同等處理。 但實際上,輸出是由輸入的各個重點部分產生的。 比如: (舉例使用,實際比重不是這樣) 對於輸出“晚上”, 各個輸入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 對於輸出“吃 ...
Sequence Generation 引入 在循環神經網絡(RNN)入門詳細介紹一文中,我們簡單介紹了Seq2Seq,我們在這里展開一下 一個句子是由 characters(字) 或 words(詞) 組成的,中文的詞可能是由數個字構成的。 如果要用訓練RNN寫句子的話 ...
目錄: 1. 前提 2. attention (1)為什么使用attention (2)attention的定義以及四種相似度計算方式 (3)attention類型(scaled dot-product attention \ multi-head attention ...
1. Attention與Transformer模型 Attention機制與Transformer模型,以及基於Transformer模型的預訓練模型BERT的出現,對NLP領域產生了變革性提升。現在在大型NLP任務、比賽中,基本很少能見到RNN的影子了。大部分是BERT(或是其各種變體 ...
一、摘要種類 抽取式摘要 直接從原文中抽取一些句子組成摘要。本質上就是個排序問題,給每個句子打分,將高分句子摘出來,再做一些去冗余(方法是MMR)等。這種方式應用最廣泛,因為比較 ...