對於某個用戶,首先得到他的興趣分類,然后從分類中挑選他可能喜歡的物品。總結一下,這個基於興趣分類的方法大概需要解決3個問題。 如何給物品進行分類? 如何確定用戶對哪些類的物品感興趣,以及感興趣的程度? 對於一個給定的類。選擇哪些屬於這個類的物品推薦給用戶,以及如何確定這些物品 ...
前面一篇隨筆介紹了基於協同過濾的推薦系統的基本思想及其python實現,本文是上一篇的續集。本文先介紹評價推薦系統的離線指標,稍后主要討論基於矩陣分解的LFM模型。 評價推薦系統的離線指標 F值得分 推薦系統的目的是為客戶提供可能喜歡 購買 的產品,但從本質上來說是一個聚類的過程 對客戶聚類或者對商品聚類 。對於一個離線的推薦系統來說,為某個客戶推薦出的產品我們可以通過某種方式知道是否為該客戶喜歡 ...
2017-03-12 21:39 1 10260 推薦指數:
對於某個用戶,首先得到他的興趣分類,然后從分類中挑選他可能喜歡的物品。總結一下,這個基於興趣分類的方法大概需要解決3個問題。 如何給物品進行分類? 如何確定用戶對哪些類的物品感興趣,以及感興趣的程度? 對於一個給定的類。選擇哪些屬於這個類的物品推薦給用戶,以及如何確定這些物品 ...
LFM(latent factor model)隱語義模型,這也是在推薦系統中應用相當普遍的一種模型。那這種模型跟ItemCF或UserCF的不同在於: 對於UserCF,我們可以先計算和目標用戶興趣相似的用戶,之后再根據計算出來的用戶喜歡的物品給目標用戶推薦物品。 而ItemCF ...
這里我想給大家介紹另外一種推薦系統,這種算法叫做潛在因子(Latent Factor)算法。這種算法是在NetFlix(沒錯,就是用大數據捧火《紙牌屋》的那家公司)的推薦算法競賽中獲獎的算法,最早被應用於電影推薦中。這種算法在實際應用中比現在排名第一的 @邰原朗 所介紹的算法誤差(RMSE ...
對於一個用戶來說,他們可能有不同的興趣。就以作者舉的豆瓣書單的例子來說,用戶A會關注數學,歷史,計算機方面的書,用戶B喜歡機器學習,編程語言,離散數學方面的書, 用戶C喜歡大師Knuth, Jiawei Han等人的著作。那我們在推薦的時候,肯定是向用戶推薦他感興趣的類別下的圖書。那么前提 ...
LFM介紹 LFM(Funk SVD) 是利用 矩陣分解的推薦算法: 其中: P矩陣是User-LF矩陣,即用戶和隱含特征矩陣 Q矩陣是LF-Item矩陣,即隱含特征和物品的矩陣 R:R矩陣是User-Item矩陣,由P*Q得來 見下圖: R評分舉證由於物品 ...
隱語義模型: 物品 表示為長度為k的向量q(每個分量都表示 物品具有某個特征的程度) 用戶興趣 表示為長度為k的向量p(每個分量都表示 用戶對某個特征的喜好程度) 用戶u對物品i的興趣可以表示為 其損失函數定義 ...
隱語義模型(Latent factor model,以下簡稱LFM),是基於矩陣分解的推薦算法,在其基本算法上引入L2正則的FunkSVD算法在推薦系統領域更是廣泛使用,在Spark上也有其實現。本文將對 LFM原理進行詳細闡述,給出其基本算法原理。此外,還將介紹使得隱語義模型聲名大噪的算法 ...
什么是FM模型 FM英文全稱是“Factorization Machine”,簡稱FM模型,中文名“因子分解機”。 FM模型其實有些年頭了,是2010年由Rendle提出的,但是真正在各大廠大規模在CTR預估和推薦領域廣泛使用,其實也就是最近幾年的事。 FM模型 原理 ...