范數(norm) 數學中的一種基本概念。在泛函分析中,它定義在賦范線性空間中,並滿足一定的條件,即①非負性;②齊次性;③三角不等式。它常常被用來度量某個向量空間(或矩陣)中的每個向量的長度或大小。 這里簡單地介紹以下幾種向量范數的定義和含義 1、 L-P范數 與閔可夫斯基 ...
L L L 范數的聯系與區別 標簽 空格分隔 : 機器學習 最近快被各大公司的筆試題淹沒了,其中有一道題是從貝葉斯先驗,優化等各個方面比較L L L 范數的聯系與區別。 L 范數 L 范數表示向量中非零元素的個數: x i with x i neq 也就是如果我們使用L 范數,即希望w的大部分元素都是 . w是稀疏的 所以可以用於ML中做稀疏編碼,特征選擇。通過最小化L 范數,來尋找最少最優的稀疏 ...
2016-09-17 16:45 0 33439 推薦指數:
范數(norm) 數學中的一種基本概念。在泛函分析中,它定義在賦范線性空間中,並滿足一定的條件,即①非負性;②齊次性;③三角不等式。它常常被用來度量某個向量空間(或矩陣)中的每個向量的長度或大小。 這里簡單地介紹以下幾種向量范數的定義和含義 1、 L-P范數 與閔可夫斯基 ...
L0、L1與L2范數、核范數 今天我們聊聊機器學習中出現的非常頻繁的問題:過擬合與規則化。我們先簡單的來理解下常用的L0、L1、L2和核范數規則化。最后聊下規則化項參數的選擇問題。這里因為篇幅比較龐大,為了不嚇到大家,我將這個五個部分分成兩篇博文。知識有限,以下都是我一些淺顯的看法 ...
一、過擬合與正則化 過擬合指的就是在機器學習模型訓練過程中把數據學習的太徹底,以至於把噪聲數據的特征也學習到了,這樣會導致在測試的時候不能夠很好地識別數據,即不能正確的分類,模型測試的時候不能夠 ...
『教程』L0、L1與L2范數 一、L0范數、L1范數、參數稀疏 L0范數是指向量中非0的元素的個數。如果我們用L0范數來規則化一個參數矩陣W的話,就是希望W的大部分元素都是0,換句話說,讓參數W是稀疏的。 既然L0可以實現 ...
才能保證測試誤差也小,而模型簡單就是通過規則函數來實現的。 規則化項可以是模型參數向量的范數。如:L ...
一、范數的概念 向量范數是定義了向量的類似於長度的性質,滿足正定,齊次,三角不等式的關系就稱作范數。 一般分為L0、L1、L2與L_infinity范數。 二、范數正則化背景 1. 監督機器學習問題無非就是“minimizeyour error while ...
目錄: 一、L0,L1范數 二、L2范數 三、核范數 今天我們聊聊機器學習中出現的非常頻繁的問題:過擬合與規則化。我們先簡單的來理解下常用的L0、L1、L2和核范數規則化。最后聊下規則化項參數的選擇問題。這里因為篇幅比較龐大,為了不嚇到大家,我將這個五個部分分成兩篇博文。知識有限 ...
今天我們聊聊機器學習中出現的非常頻繁的問題:過擬合與規則化。我們先簡單的來理解下常用的L0、L1、L2和核范數規則化。最后聊下規則化項參數的選擇問題。這里因為篇幅比較龐大,為了不嚇到大家,我將這個五個部分分成兩篇博文。知識有限,以下都是我一些淺顯的看法,如果理解存在錯誤,希望大家不吝指正。謝謝 ...