Fisher准則函數 Fisher准則的基本原理:找到一個最合適的投影軸,使兩類樣本在該軸上投影之間的距離盡可能遠,而每一類樣本的投影盡可能緊湊,從而使分類效果為最佳。 假設有兩類樣本,分別為$X_1$和$X_2$ 則各類在d維特征空間里的樣本均值為: $$M_i ...
原文地址:http: blog.csdn.net htyang article details Fisher 線性分類器由R.A.Fisher在 年提出,至今都有很大的研究意義,下面介紹Fisher分類器的Fisher准則函數 Fisher准則函數 在模式識別的分類算法中,大概可以分為兩類,一種是基於貝葉斯理論的分類器,該類型分類器也稱為參數判別方法,根據是基於貝葉斯理論的分類器必須根據所提供的樣 ...
2016-06-15 09:00 0 2505 推薦指數:
Fisher准則函數 Fisher准則的基本原理:找到一個最合適的投影軸,使兩類樣本在該軸上投影之間的距離盡可能遠,而每一類樣本的投影盡可能緊湊,從而使分類效果為最佳。 假設有兩類樣本,分別為$X_1$和$X_2$ 則各類在d維特征空間里的樣本均值為: $$M_i ...
一、通俗的解釋: 問題提出:還是以iris的數據為例,有A、B、C三種花,每一類的特征都用4維特征向量表示。現在已知一個特征向量,要求對應的類別,而我們人可以直接通過眼睛看而作出分類的是在一維二維三維空間,而不適應這樣的四維數據。 啟示:假設有這樣的一個方向向量,其與特征向量進行內積運算 ...
Neighbor (k-NN)分類器,該分類器的基本思想是通過將測試圖像與訓練集帶標簽的圖像進行比較 ...
1. 線性分類器:通過線性映射,將數據分到對應的類別中 ①線性函數:f(xi, W, b)= W * xi + b W為權值(weights),b為偏移值(bias vector),xi為數據 假設每個圖像數據被拉長為一個長度為D的列向量,其D D">大小為[D x 1];W ...
1 引入 上一篇介紹了圖像分類問題。圖像分類的任務,就是從已有的固定分類標簽集合中選擇一個並分配給一張圖像。我們還介紹了k-Nearest Neighbor (k-NN)分類器,該分類器的基本思想是通過將測試圖像與訓練集帶標簽的圖像進行比較,來給測試圖像打上分類標簽。k-Nearest ...
以下內容參考CS231n。 上一篇關於分類器的文章,使用的是KNN分類器,KNN分類有兩個主要的缺點: 空間上,需要存儲所有的訓練數據用於比較。 時間上,每次分類操作,需要和所有訓練數據比較。 本文開始線性分類器的學習。 和KNN相比,線性分類器才算得上真正具有實用價值 ...
...
一、實驗目的和要求 目的: 了解線性分類器,對分類器的參數做一定的了解,理解參數設置對算法的影響。 要求: 1. 產生兩類樣本 2. 采用線性分類器生成出兩類樣本的分類面 3. 對比線性分類器的性能,對比參數設置的結果 二、實驗環境、內容和方法 環境 ...