caffe程序自帶有一張小貓圖片,存放路徑為caffe根目錄下的 examples/images/cat.jpg, 如果我們想用一個訓練好的caffemodel來對這張圖片進行分類,那該怎么辦呢? 如果不用這張小貓圖片,換一張別的圖片,又該怎么辦呢?如果學會了小貓圖片的分類,那么換成其它圖片,程序 ...
caffe團隊用imagenet圖片進行訓練,迭代 多萬次,訓練出來一個model。這個model將圖片分為 類,應該是目前為止最好的圖片分類model了。 假設我現在有一些自己的圖片想進行分類,但樣本量太小,可能只有幾百張,而一般深度學習都要求樣本量在 萬以上,因此訓練出來的model精度太低,根本用不上,那怎么辦呢 那就用caffe團隊提供給我們的model吧。 因為訓練好的model里面存放 ...
2016-01-17 17:57 67 46295 推薦指數:
caffe程序自帶有一張小貓圖片,存放路徑為caffe根目錄下的 examples/images/cat.jpg, 如果我們想用一個訓練好的caffemodel來對這張圖片進行分類,那該怎么辦呢? 如果不用這張小貓圖片,換一張別的圖片,又該怎么辦呢?如果學會了小貓圖片的分類,那么換成其它圖片,程序 ...
1、caffemodel文件 文件名稱為:bvlc_reference_caffenet.caffemodel,文件大小為230M左右,為了代碼的統一,將這個caffemodel文件下載到caffe根目錄下的 models/bvlc_reference_caffenet/ 文件夾下面。可以運行 ...
前言: 本文章記錄了我將自己的數據集處理並訓練的流程,幫助一些剛入門的學習者,也記錄自己的成長,萬事起於忽微,量變引起質變。 正文: 一、流程 1)准備數據集 2)數據轉換為lmdb格式 3)計算均值並保存(非必需) 4)創建 ...
經過前面兩篇博文的學習,我們已經訓練好了一個caffemodel模型,並生成了一個deploy.prototxt文件,現在我們就利用這兩個文件來對一個新的圖片進行分類預測。 我們從mnist數據集的test集中隨便找一張圖片,用來進行實驗。 最后輸出 the class ...
因為畢設需要,我首先是用ffmpeg抽取某個寵物視頻的關鍵幀,然后用caffe對這個關鍵幀中的物體進行分類。 1.抽取關鍵幀的命令: 2.用python編寫腳本,利用在imagenet上訓練的模型分類視頻幀中的物體。 抽取得到的視頻關鍵幀都存放在文件夾"/home ...
對於訓練好的Caffe 網絡 輸入:彩色or灰度圖片 做minist 下手寫識別分類,不能直接使用,需去除均值圖像,同時將輸入圖像像素歸一化到0-1直接即可。 #include <caffe/caffe ...
學習caffe的目的,不是簡單的做幾個練習,最終還是要用到自己的實際項目或科研中。因此,本文介紹一下,從自己的原始圖片到lmdb數據,再到訓練和測試模型的整個流程。 一、准備數據 有條件的同學,可以去imagenet的官網http://www.image-net.org ...