原文:機器學習中的Bias(偏差),Error(誤差),和Variance(方差)有什么區別和聯系?

原文:http: www.zhihu.com question 個回答 .zm item answer quot data init quot params quot : quot url token quot : , quot pagesize quot : , quot offset quot : , quot nodename quot : quot QuestionAnswerListV ...

2015-11-28 12:04 0 4267 推薦指數:

查看詳情

Bias(偏差),Error(誤差),和Variance(方差)的區別聯系

准: bias描述的是根據樣本擬合出的模型的輸出預測結果的期望與樣本真實結果的差距,簡單講,就是在樣本上擬合的好不好。要想在bias上表現好,low bias,就得復雜化模型,增加模型的參數,但這樣容易過擬合 (overfitting),過擬合對應上圖是high variance,點很分散 ...

Fri Jun 29 03:13:00 CST 2018 0 1813
偏差(Bias)和方差(Variance)——機器學習的模型選擇

模型性能的度量 在監督學習,已知樣本 ,要求擬合出一個模型(函數),其預測值與樣本實際值的誤差最小。 考慮到樣本數據其實是采樣,並不是真實值本身,假設真實模型(函數)是,則采樣值,其中代表噪音,其均值為0,方差為。 擬合函數的主要目的是希望它能對新的樣本進行預測 ...

Wed Jul 29 21:48:00 CST 2020 0 642
機器學習偏差(bias)和方差(variance)

轉發:http://blog.csdn.net/mingtian715/article/details/53789487請移步原文 內容參見stanford課程《機器學習》 對於已建立的某一機器學習模型來說,不論是對訓練數據欠擬合或是過擬合都不是我們想要的,因此應該有一種合理 ...

Thu Jan 04 04:40:00 CST 2018 0 2507
機器學習算法偏差-方差權衡(Bias-Variance Tradeoff)

簡單的以下面曲線擬合例子來講: 直線擬合后,相比原來的點偏差最大,最后一個圖完全擬合了數據點偏差最小;但是拿第一個直線模型去預測未知數據,可能會相比最后一個模型更准確,因為最后一個模型過擬合了,即第一個模型的方差比最后一個模型小。一般而言高偏差意味着欠擬合,高方差意味着過擬合。他們之間 ...

Wed May 07 05:43:00 CST 2014 2 10751
模型的偏差bias以及方差variance

1. 模型的偏差以及方差: 模型的偏差:是一個相對來說簡單的概念:訓練出來的模型在訓練集上的准確度。 模型的方差:模型是隨機變量。設樣本容量為n的訓練集為隨機變量的集合(X1, X2, ..., Xn),那么模型是以這些隨機變量為輸入的隨機變量函數(其本身仍然是隨機變量):F(X1, X2 ...

Mon Aug 20 04:27:00 CST 2018 0 3685
機器學習偏差方差

數學解釋 偏差:描述的是預測值(估計值)的期望與真實值之間的差距。偏差越大,越偏離真實數據,如下圖第二行所示。 方差:描述的是預測值的變化范圍,離散程度,也就是離其期望值的距離。方差越大,數據的分布越分散,如下圖右列所示。 機器學習偏差方差 首先,假設 ...

Mon Sep 17 17:53:00 CST 2018 0 832
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM