原文:推薦系統之協同過濾

這個轉自csdn,很貼近工程。 協同過濾 Collective Filtering 可以說是推薦系統的標配算法。 在談推薦必談協同的今天,我們也來談一談基於KNN的協同過濾在實際的推薦應用中的一些心得體會。 我們首先從協同過濾的兩個假設聊起。 兩個假設: 用戶一般會喜歡與自己喜歡物品相似的物品 用戶一般會喜歡與自己相似的其他用戶喜歡的物品 上述假設分別對應了協同過濾的兩種實現方式:基於物品相似 i ...

2015-07-12 23:24 0 3020 推薦指數:

查看詳情

推薦系統-協同過濾

一、基本介紹 1. 推薦系統任務 推薦系統的任務就是聯系用戶和信息一方面幫助用戶發現對自己有價值的信息,而另一方面讓信息能夠展現在對它感興趣的用戶面前從而實現信息消費者和信息生產者的雙贏。 2. 與搜索引擎比較 相同點:幫助用戶快速發現有用信息的工具 不同點:和搜索引擎 ...

Sun Dec 02 21:36:00 CST 2018 0 665
推薦系統| 基於協同過濾

3. 基於協同過濾推薦算法 (用戶和物品的關聯) 協同過濾(Collaborative Filtering,CF)-- 用戶和物品之間關聯的用戶行為數據 ①基於近鄰的協同過濾 ...

Wed Sep 18 19:44:00 CST 2019 0 1161
協同過濾推薦系統中的應用

1.概述 前面的博客介紹過如何構建一個推薦系統,以及簡要的介紹了協同過濾的實現。本篇博客,筆者將介紹協同過濾推薦系統的應用。推薦系統是大數據和機器學習中最常見、最容易理解的應用之一。其實,在日常的生活當中,我們會頻繁的遇到推薦的場景 ,比如你在電商網站購買商品、使用視頻App觀看視頻、在手 ...

Fri Oct 30 08:58:00 CST 2020 0 654
推薦系統-協同過濾原理與實現

一、基本介紹 1. 推薦系統任務 推薦系統的任務就是聯系用戶和信息一方面幫助用戶發現對自己有價值的信息,而另一方面讓信息能夠展現在對它感興趣的用戶面前從而實現信息消費者和信息生產者的雙贏。 2. 與搜索引擎比較 相同點:幫助用戶快速發現有用信息的工具 不同點:和搜索引擎不同的是推薦 ...

Sat Nov 03 22:21:00 CST 2018 5 20884
協同過濾推薦系統的R實現

本節將會學習到: 協同過濾推薦系統 協同過濾推薦系統的R實現 推薦系統的可視化 不同推薦系統的離線實驗算法比較及可視化 前言 推薦系統概述 數據構成 set.seed ( 1234 ) library ...

Wed Nov 23 18:42:00 CST 2016 0 4261
基於用戶的協同過濾來構建推薦系統

1.概述 之前介紹了如何構建一個推薦系統,今天給大家介紹如何基於用戶的協同過濾來構建推薦的實戰篇。 2.內容 協同過濾技術在推薦系統中應用的比較廣泛,它是一個快速發展的研究領域。它比較常用的兩種方法是基於內存(Memory-Based)和基於模型(Model-Based)。 基於內存 ...

Thu Jun 25 21:54:00 CST 2020 1 1350
推薦系統-協同過濾算法

一.UserCF【基於用戶】   基於用戶的協同過濾,通過不同用戶對商品的評分來評測用戶之間的相似性,基於用戶之間的相似性進行推薦。簡單來說就是:給用戶推薦和他興趣相似的其它用戶喜歡的商品。    二.ItemCF【基於商品】   基於商品的協同過濾,通過用戶對不同商品的評分來評測商品之間 ...

Fri Jun 14 04:46:00 CST 2019 0 997
推薦系統協同過濾CF和基於內容的推薦CB

Collaborative Filtering Recommendations (協同過濾,簡稱CF) 是目前最流行的推薦方法,在研究界和工業界得到大量使用。但是,工業界真正使用的系統一般都不會只有CF推薦算法,Content-based Recommendations (CB,基於內容 ...

Wed Jan 16 19:41:00 CST 2019 0 880
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM