Principal Component Analysis 算法優缺點: 優點:降低數據復雜性,識別最重要的多個特征 缺點:不一定需要,且可能損失有用的信息 適用數據類型:數值型數據 算法思想: 降維的好處: 使得數據集更易使用 降低 ...
PCA要做的事降噪和去冗余,其本質就是對角化協方差矩陣。 一.預備知識 . 協方差分析 對於一般的分布,直接代入E X 之類的就可以計算出來了,但真給你一個具體數值的分布,要計算協方差矩陣,根據這個公式來計算,還真不容易反應過來。網上值得參考的資料也不多,這里用一個例子說明協方差矩陣是怎么計算出來的吧。 用matlab計算這個例子 z , , , , cov z ans . . . . 可以看出 ...
2015-06-27 11:47 0 8451 推薦指數:
Principal Component Analysis 算法優缺點: 優點:降低數據復雜性,識別最重要的多個特征 缺點:不一定需要,且可能損失有用的信息 適用數據類型:數值型數據 算法思想: 降維的好處: 使得數據集更易使用 降低 ...
一、因子分析 因子分析是將具有錯綜復雜關系的變量(或樣本)綜合為少數幾個因子,以再現原始變量和因子之間的相互關系,探討多個能夠直接測量,並且具有一定相關性的實測指標是如何受少數幾個內在的獨立因子 ...
概念 在機器學習中經常會碰到一些高維的數據集,而在高維數據情形下會出現數據樣本稀疏,距離計算等困難,這類問題是所有機器學習方法共同面臨的嚴重問題,稱之為“ 維度災難 ”。另外在高維特征中容易出現特征之間的線性相關,這也就意味着有的特征是冗余存在的。基於這些問題,降維思想就出現了。 降維方法 ...
轉載請聲明出處:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA簡介 1. 相關背景 上完陳恩紅老師的《機器學習與知識發現》和季海波老師的《矩陣代數》兩門課之后,頗有體會。最近在做主成分分析和奇異值分解 ...
PCA(Principal Component Analysis)是一種常用的數據分析方法。PCA通過線性變換將原始數據變換為一組各維度線性無關的表示,可用於提取數據的主要特征分量,常用於高維數據的降維。網上關於PCA的文章有很多,但是大多數只描述了PCA的分析過程,而沒有講述其中的原理。這篇 ...
降維目的:樣本數據為高維數據時,對數據進行降維操作,避免模型出現過擬合。 1.過擬合含義:訓練集誤差小,驗證集誤差大。 過擬合三種解決方案:1)增加數據集;2)正則化; 3)降維。 2.高維災難: 具有高維度特征的數據易導致高維災難。 高維災難的幾何角度解釋: 高維災難含義:高維 ...
數據集中含有太多特征時,需要簡化數據。降維不是刪除部分特征,而是將高維數據集映射到低維數據集,映射后的數據集更簡潔,方便找出對結果貢獻最大的部分特征。 簡化數據的原因: 1、使得數據集更易使用 2、降低很多算法的計算開銷 3、去除噪聲 4、使得結果易懂 PCA:principal ...
MATLAB實例:PCA降維 作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/ 1. iris數據 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 ...