2019中國大學生程序設計競賽(CCPC) - 網絡選拔賽


^ & ^

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 229 Accepted Submission(s): 117

Problem Description
Bit operation is a common computing method in computer science ,Now we have two positive integers A and B ,Please find a positive integer C that minimize the value of the formula (A xor C) & (B xor C) .Sometimes we can find a lot of C to do this ,So you need to find the smallest C that meets the criteria .

For example ,Let's say A is equal to 5 and B is equal to 3 ,we can choose C=1,3.... ,so the answer we're looking for C is equal to 1.

If the value of the expression is 0 when C=0, please print 1.

Input
The input file contains T test samples.(1<=T<=100)

The first line of input file is an integer T.

Then the T lines contains 2 positive integers, A and B, (1≤A,B<232)

Output
For each test case,you should output the answer and a line for each answer.

Sample Input
1
3 5

Sample Output
1

紀念一下我的傻逼腦子,這個題目肯定是將兩個位都是1的消掉,也就是同時異或上a&b ,但是我當時沒想到會超int。日,,,wa了多少,還是隊友寫對的,我真想撞死算了,以后直接longlong,,,,

#include <iostream>
using namespace std;
typedef long long ll ;
int main()
{
	int t ;
	cin >> t ;
	while(t --)
	{
		ll n , m ;
		cin >> n >> m ;
		n = 1ll * n & m ;
		if(n == 0) n = 1 ; 
		cout << n << endl ;
	}
	return 0 ;
}

Fishing Master

Problem Description
Heard that eom is a fishing MASTER, you want to acknowledge him as your mentor. As everybody knows, if you want to be a MASTER's apprentice, you should pass the trial. So when you find fishing MASTER eom, the trial is as follow:

There are n fish in the pool. For the i - th fish, it takes at least ti minutes to stew(overcook is acceptable). To simplify this problem, the time spent catching a fish is k minutes. You can catch fish one at a time and because there is only one pot, only one fish can be stewed in the pot at a time. While you are catching a fish, you can not put a raw fish you have caught into the pot, that means if you begin to catch a fish, you can't stop until after k minutes; when you are not catching fish, you can take a cooked fish (stewed for no less than ti) out of the pot or put a raw fish into the pot, these two operations take no time. Note that if the fish stewed in the pot is not stewed for enough time, you cannot take it out, but you can go to catch another fish or just wait for a while doing nothing until it is sufficiently stewed.

Now eom wants you to catch and stew all the fish as soon as possible (you definitely know that a fish can be eaten only after sufficiently stewed), so that he can have a satisfying meal. If you can complete that in the shortest possible time, eom will accept you as his apprentice and say "I am done! I am full!". If you can't, eom will not accept you and say "You are done! You are fool!".

So what's the shortest time to pass the trial if you arrange the time optimally?

Input
The first line of input consists of a single integer T(1≤T≤20), denoting the number of test cases.

For each test case, the first line contains two integers n(1≤n≤105),k(1≤k≤109), denoting the number of fish in the pool and the time needed to catch a fish.

the second line contains n integers, t1,t2,…,tn(1≤ti≤109) ,denoting the least time needed to cook the i - th fish.

Output
For each test case, print a single integer in one line, denoting the shortest time to pass the trial.

Sample Input
2
3 5
5 5 8
2 4
3 3

Sample Output
23
11

Hint

Case 1: Catch the 3rd fish (5 mins), put the 3rd fish in, catch the 1st fish (5 mins), wait (3 mins),

take the 3rd fish out, put the 1st fish in, catch the 2nd fish(5 mins),

take the 1st fish out, put the 2nd fish in, wait (5 mins), take the 2nd fish out.

Case 2: Catch the 1st fish (4 mins), put the 1st fish in, catch the 2nd fish (4 mins),

take the 1st fish out, put the 2nd fish in, wait (3 mins), take the 2nd fish out.

這個題目我知道是用貪心做,但是不管怎么想都是錯的,根本原因是我沒想到可以不止捕一條魚,我以為在煮魚的同時只能補一條,也就是即使剩下可以再捕幾條魚的時間也只能捕一條,然后就一直wawawawa的哭啊,
抓第一條魚的耗時是無法避免的,抓魚應該從烹飪時間最長的開始抓起,這樣才可以用烹飪時間去抓更多的魚,而剩下的不夠抓一條魚的烹飪時間應該存下來,后面在抓魚的時候從這些時間中選出最大的x,抓魚的時間會和烹飪的時間重合最多,這樣可以使時間(k-x)最小。

#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long ll ;
priority_queue<int> q ;
const int N = 1e5 + 10 ;
int a[N] ;
bool cmp(int a,  int b)
{
	return a > b ;
}
int main()
{
	int T ;
	scanf("%d",&T) ;
	while(T --)
	{
		while(q.size()) q.pop() ;
		int n , k ;
		scanf("%d%d",&n,&k) ;
		for(int i = 1;i <= n;i ++)
		 scanf("%d" , &a[i]) ;
		sort(a + 1 ,  a + n + 1 , cmp) ;
		ll ans = k + a[1] ;
		int t = a[1] / k ;
		if(a[1] % k) 
		 q.push(a[1] % k) ;
	    int i ;
		for(i = 2;i <= n;i ++)
		 {
		 	if(t)
		 	 {
		 	 	t -- ;
		 	 	t += a[i] / k;
		 	 	ans += a[i] ;
		 	 	if(a[i] % k)
		 	 	 q.push(a[i] % k) ;
		 	 	 
			 }
			 else 
			   break ;
		 }
		 for(;i <= n;i ++)
		  {
		  	int x = q.top() ;
		  	q.pop() ;
		  	ans += k - x + a[i] ;
		  	q.push(a[i]) ;
		  }
		 cout << ans << endl ;
	} 
	
	return 0 ;
} 

Windows Of CCPC

Problem Description
In recent years, CCPC has developed rapidly and gained a large number of competitors .One contestant designed a design called CCPC Windows .The 1-st order CCPC window is shown in the figure:

And the 2-nd order CCPC window is shown in the figure:

We can easily find that the window of CCPC of order k is generated by taking the window of CCPC of order k−1 as C of order k, and the result of inverting C/P in the window of CCPC of order k−1 as P of order k.
And now I have an order k ,please output k-order CCPC Windows , The CCPC window of order k is a 2k∗2k matrix.

Input
The input file contains T test samples.(1<=T<=10)

The first line of input file is an integer T.

Then the T lines contains a positive integers k , (1≤k≤10)

Output
For each test case,you should output the answer .

Sample Input
3
1
2
3

Sample Output
CC
PC
CCCC
PCPC
PPCC
CPPC
CCCCCCCC
PCPCPCPC
PPCCPPCC
CPPCCPPC
PPPPCCCC
CPCPPCPC
CCPPPPCC
PCCPCPPC

在這里插入圖片描述

一共要輸出2^n行,那么可以一行一行的輸出,假設我要輸出總行為8行,現在要輸出第1行,
那么其實是輸出總行為4行的第1行輸出兩遍,
當輸出左下角的部分時,這是總行為4行的相應行相反輸出1遍,在輸出1遍相同的。

#include <iostream>
#include <algorithm>
#include <cmath> 
using namespace std;
void f(int n , int s , int t)
{
	if(n == 2)
	 {
	 	if(t == 1) 
	 	 {
	 	 	if(s == 1) cout << "CC" ;
	 	 	else cout << "PC" ;
		 }
		 else 
		  {
		  	if(s == 1) cout << "PP" ;
		  	else  cout << "CP" ;
		  }
		  return ;
	 }
	 int x = s % (n / 2) ;
	 if(x == 0) x = n / 2 ;
	 if(t == 1)
	  {
	  	if(s > n / 2) f(n / 2 , x , 0) ;
	  	else f(n / 2 , x , 1) ;
	  	f(n / 2 , x , 1) ;
	  }
	  else if(t == 0)
	   {
	   	if(s > n / 2)
	   	   f(n / 2 , x , 1) ;
	   	else f(n / 2 , x , 0) ;
	   	f(n / 2 , x , 0) ;
	   }
}
int main()
{
	int n , t ;
	scanf("%d",&t) ;
	while(t --)
	{
		int n ;
		scanf("%d" , &n) ;
		n = pow(2 , n) ;
		for(int i = 1;i <= n;i ++)
		 {
		 	f(n , i , 1) ;
		 	puts("") ;
		 }
	}
	return 0 ;
}

Shuffle Card

Problem Description
A deck of card consists of n cards. Each card is different, numbered from 1 to n. At first, the cards were ordered from 1 to n. We complete the shuffle process in the following way, In each operation, we will draw a card and put it in the position of the first card, and repeat this operation for m times.

Please output the order of cards after m operations.

Input
The first line of input contains two positive integers n and m.(1<=n,m<=105)

The second line of the input file has n Numbers, a sequence of 1 through n.

Next there are m rows, each of which has a positive integer si, representing the card number extracted by the i-th operation.

Output
Please output the order of cards after m operations. (There should be one space after each number.)

Sample Input
5 3
1 2 3 4 5
3
4
3

Sample Output
3 4 1 2 5

這個題目說是把每一次操作的牌都放第一位,我踏馬,,,,,看錯了,這個樣例設置的也是夠絕,讓自己誤以為自己寫的沒錯啊,然后直接甩給隊友,讓他刷水題,一次就AC了 ,,,,

#include <iostream>
using namespace std;
const int N = 1e5 + 10 ;
int a[N] , vis[N] , b[N] , tot , d[N];
int main()
{
	int n , m ;
	scanf("%d%d",&n,&m);
	for(int i = 1;i <= n;i ++)
	 scanf("%d",&a[i]) ;
	for(int i = 1;i <= m;i ++)
		scanf("%d",&d[i]) ;
	for(int i = m;i >= 1;i --)
	 if(!vis[d[i]])
	  b[++ tot] = d[i] , vis[d[i]] = 1  ;
	for(int i = 1;i <= n;i ++)
	 if(!vis[a[i]])
	  b[++ tot] = a[i] ;
	for(int i = 1;i <= tot ;i ++)
	 printf("%d " , b[i]) ;
	return 0 ;
}

上面的四題都是水題,但是我全部栽上面了

K-th occurrence

Time Limit: 3000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 2644 Accepted Submission(s): 815

Problem Description
You are given a string S consisting of only lowercase english letters and some queries.

For each query (l,r,k), please output the starting position of the k-th occurence of the substring SlSl+1...Sr in S.

Input
The first line contains an integer T(1≤T≤20), denoting the number of test cases.

The first line of each test case contains two integer N(1≤N≤105),Q(1≤Q≤105), denoting the length of S and the number of queries.

The second line of each test case contains a string S(|S|=N) consisting of only lowercase english letters.

Then Q lines follow, each line contains three integer l,r(1≤l≤r≤N) and k(1≤k≤N), denoting a query.

There are at most 5 testcases which N is greater than 103.

Output
For each query, output the starting position of the k-th occurence of the given substring.

If such position don't exists, output −1 instead.

Sample Input
2
12 6
aaabaabaaaab
3 3 4
2 3 2
7 8 3
3 4 2
1 4 2
8 12 1
1 1
a
1 1 1


Sample Output
5
2
-1
6
9
8
1

(好騷的操作)后綴數組+ st表+二分+主席樹
后綴數組,就是將所有后綴按照字典序排序的一個復雜度很低的算法,sa[i]表示第i個小字典序的后綴字符串位置。對於一個字串而言,這個字串肯定是某一個后綴的前綴, 這個整個后綴數組排好序之后,完全符合二分規則,因為字典序已經從小到大弄好了,然后從L開始向左二分一次,向右二分一下,就得到了目標字串的所在sa數組下標區間,::在向左二分的時候,然后如果二分的時候發現這個字串的字典序比mid字典序大了, 那么肯定要往右,因為右邊字典序大,否則的話,往左。向右二分的時候反過來。然后此時通過二分得到的sa下標[x , y] , 全部滿足suf(sa[i])的前綴都和目標字串相符合,然后在根據主席樹求[x , y] , 區間內,sa數組的第k大,即為答案
二分的原理講解,后綴數組講解

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <unordered_map>
#include <vector>
#include <map>
#include <list>
#include <queue>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <stack>
#include <set>
#include <bitset>
#include <deque>
#pragma GCC optimize(3 , "Ofast" , "inline")
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization("unroll-loops")
using namespace std ;
#define ios ios::sync_with_stdio(false) , cin.tie(0) , cout.tie(0)
#define x first
#define y second
#define pb push_back
#define ls rt << 1
#define rs rt << 1 | 1
typedef long long ll ;
const double esp = 1e-6 , pi = acos(-1) ;
typedef pair<int , int> PII ;
const int N = 1e6 + 10 , INF = 0x3f3f3f3f , mod = 1e9 + 7;
char s[N];
int n, m;
int y[N], x[N], c[N], sa[N], rk[N], height[N] , st[30][N] ;
int get_SA() {
    memset(c, 0, sizeof(c));
    for (int i = 1; i <= n; ++i) ++c[x[i] = s[i]];
    for (int i = 2; i <= m; ++i) c[i] += c[i - 1];
    for (int i = n; i >= 1; --i) sa[c[x[i]]--] = i;
    for (int k = 1; k <= n; k <<= 1) {
        int num = 0;

        for (int i = n - k + 1; i <= n; ++i) y[++num] = i;
        for (int i = 1; i <= n; ++i) if (sa[i] > k) y[++num] = sa[i] - k;
        for (int i = 1; i <= m; ++i) c[i] = 0;
        for (int i = 1; i <= n; ++i) ++c[x[i]];
        for (int i = 2; i <= m; ++i) c[i] += c[i - 1];
        for (int i = n; i >= 1; --i) sa[c[x[y[i]]]--] = y[i], y[i] = 0;
        swap(x, y);
        x[sa[1]] = 1;
        num = 1;
        for (int i = 2; i <= n; ++i)
            x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k]) ? num : ++num;
        if (num == n) break;
        m = num;

    }
    return 0;
}
int get_height() {
    int k = 0;
    for (int i = 1; i <= n; ++i) rk[sa[i]] = i;
    for (int i = 1; i <= n; ++i) {
        if (rk[i] == 1) continue;
        if (k) --k;
        int j = sa[rk[i] - 1];
        while (j + k <= n && i + k <= n && s[i + k] == s[j + k]) ++k;
        height[rk[i]] = k;
    }
    return 0 ;
}
void build_st() {
    for (int i = 1; i <= n; i++) st[0][i] = height[i];
    for (int k = 1; k <= 19; k++) {
        for (int i = 1; i + (1 << k) - 1 <= n; i++) {
            st[k][i] = min(st[k - 1][i], st[k - 1][i + (1 << k - 1)]);
        }
    }
    return ;
}
int lcp(int x, int y) {
    int l = rk[x], r = rk[y];
    if (l > r) swap(l, r);
    if (l == r) return n - x + 1;
    int t = log2(r - l);
    return min(st[t][l + 1], st[t][r - (1 << t) + 1]);
}
struct node {
  int l , r , sum ;
}t[N * 4];
int tot = 0 ;
void up(int now) {
  t[now].sum = t[t[now].l].sum + t[t[now].r].sum ;
}
void build(int &now , int l , int r) {
  t[now = ++ tot].sum = 0 ;
  if(l == r) return ;
  int mid = l + r >> 1 ;
  build(t[now].l , l , mid) ;
  build(t[now].r , mid + 1 , r) ;
  return ;
}
void update(int &now , int last , int l , int r , int pos) {
  t[now = ++ tot] = t[last] ;
  t[now].sum ++ ;
  if(l == r) return ;
  int mid = l + r >> 1 ;
  if(pos <= mid) update(t[now].l , t[last].l , l , mid , pos) ;
  else update(t[now].r , t[last].r , mid + 1 , r , pos) ;
  return ;
}
int ask(int now , int last , int l , int r , int k) {
  if(l == r) return l ;
  int sum = t[t[now].l].sum - t[t[last].l].sum ;
  int mid = l + r>> 1 ;
  if(sum >= k) return ask(t[now].l , t[last].l , l , mid , k) ;
  else return ask(t[now].r , t[last].r , mid + 1 , r , k - sum) ;
}
int root[N] ;
int work()
{

  int q ;
  tot = 0 ;
  scanf("%d%d" , &n , &q) ;
  scanf("%s" , s + 1) ;
  m = 123 ;
  get_SA() ;
  get_height() ;
  build_st() ;

  build(root[0] , 1,  n ) ;
  for(int i = 1; i <= n; i ++ ) update(root[i] , root[i - 1] , 1 , n , sa[i]) ;
  while(q --) {
    int l , r , k ;
    scanf("%d%d%d" , &l , &r , &k) ;
    int len = r - l + 1 ;
    int left = 1 , right = rk[l] ;
    int ans = rk[l] ;

    while(left <= right) {
      int mid = left + right >> 1 ;

      if(lcp(sa[mid] , l) >= len) right = mid - 1 , ans = mid ;
      else left = mid + 1 ;
    }

    int LL = ans ;
    ans = rk[l] ;
    right = n ;
    left = rk[l] ;
    while(left <= right) {
      int mid = left + right >> 1 ;
      if(lcp(sa[mid] , l) >= len) left = mid + 1 , ans = mid ;
      else right = mid - 1 ;
    }
    int RR = ans ;

    if(RR - LL + 1 < k) puts("-1") ;
    else printf("%d\n" , ask(root[RR] , root[LL - 1] , 1 , n , k)) ;
  }
  return 0 ;
}
int main()
{
  //   freopen("C://Users//spnooyseed//Desktop//in.txt" , "r" , stdin) ;
  //   freopen("C://Users//spnooyseed//Desktop//out.txt" , "w" , stdout) ;
  int n ;
  scanf("%d" , &n) ;
  while(n --)
  work() ;
  return 0 ;
}
/*
*/

array

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 2926 Accepted Submission(s): 1078

Problem Description
You are given an array a1,a2,...,an(∀i∈[1,n],1≤ai≤n). Initially, each element of the array is unique.

Moreover, there are m instructions.

Each instruction is in one of the following two formats:

  1. (1,pos),indicating to change the value of apos to apos+10,000,000;
  2. (2,r,k),indicating to ask the minimum value which is not equal to any ai ( 1≤i≤r ) and **not less ** than k.

Please print all results of the instructions in format 2.

Input
The first line of the input contains an integer T(1≤T≤10), denoting the number of test cases.

In each test case, there are two integers n(1≤n≤100,000),m(1≤m≤100,000) in the first line, denoting the size of array a and the number of instructions.

In the second line, there are n distinct integers a1,a2,...,an (∀i∈[1,n],1≤ai≤n),denoting the array.
For the following m lines, each line is of format (1,t1) or (2,t2,t3).
The parameters of each instruction are generated by such way :

For instructions in format 1 , we defined pos=t1⊕LastAns . (It is promised that 1≤pos≤n)

For instructions in format 2 , we defined r=t2⊕LastAns,k=t3⊕LastAns. (It is promised that 1≤r≤n,1≤k≤n )

(Note that ⊕ means the bitwise XOR operator. )

Before the first instruction of each test case, LastAns is equal to 0 .After each instruction in format 2, LastAns will be changed to the result of that instruction.

(∑n≤510,000,∑m≤510,000 )

Output
For each instruction in format 2, output the answer in one line.

Sample Input
3
5 9
4 3 1 2 5 
2 1 1
2 2 2
2 6 7
2 1 3
2 6 3
2 0 4
1 5
2 3 7
2 4 3
10 6
1 2 4 6 3 5 9 10 7 8 
2 7 2
1 2
2 0 5
2 11 10
1 3
2 3 2
10 10
9 7 5 3 4 10 6 2 1 8 
1 10
2 8 9
1 12
2 15 15
1 12
2 1 3
1 9
1 12
2 2 2
1 9
 

Sample Output
1
5
2
2
5
6
1
6
7
3
11
10
11
4
8
11

先看查詢某個區間內,大於K的並且不等於a[i]的最小數是多少,也就是說a[i]不能被選中,並且要大於等於K,在主席樹中,把a[i]直接設置為INF,即不能被選中,然后查詢個區間最值問題。那么修改操作是把a[i] += 1000000 , 這個也就相當於把原數組a[i] += 1000000 , 但是我們可以選擇沒有加1000000之前的a[i],在主席樹上就要恢復a[i]為原本的值,所以就直接用個set來維護操作1的值,然后每次選答案的時候,答案由兩部分組成,主席樹部分,還有一個set部分,這兩個取個最小值

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <unordered_map>
#include <vector>
#include <map>
#include <list>
#include <queue>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <stack>
#include <set>
#include <bitset>
#include <deque>
using namespace std ;
#define x first
#define y second
#define pb push_back
#define ls rt << 1
#define rs rt << 1 | 1
typedef long long ll ;
const double esp = 1e-6 , pi = acos(-1) ;
typedef pair<int , int> PII ;
const int N = 3e6 + 10 , INF = 0x3f3f3f3f , mod = 1e9 + 7;
int a[N] , b[N] , cnt = 0 , n ;
int root[N] , tot ;
struct node {
  int l , r , minx ;
}t[N];
void up(int now) {
  t[now].minx = min(t[t[now].l].minx , t[t[now].r].minx );
}
void build(int &now , int l , int r) {
  now = ++ tot ;
  if(l == r) {
    t[now].minx = l ;
    return ;
  }
  int mid = l + r >> 1 ;
  build(t[now].l , l , mid) ;
  build(t[now].r , mid + 1 , r) ;
  up(now) ;
  return ;
}
void update(int &now , int last , int l , int r , int pos) {
  t[now = ++ tot] = t[last] ;
  if(l == r) {
    t[now].minx = 1e9 ;
    return ;
  }
  int mid = l + r >> 1 ;
  if(pos <= mid) update(t[now].l , t[last].l , l , mid , pos) ;
  else update(t[now].r , t[last].r , mid + 1 , r , pos) ;
  up(now) ;
  return ;
}
int ask(int now  , int l , int r , int ql , int qr) {
  if(ql <= l && r <= qr) return t[now].minx ;
  int mid = l + r >> 1 ;
  int ans = 1e9 ;
  if(ql <= mid) ans = min(ans , ask(t[now].l  , l , mid , ql , qr)) ;
  if(qr > mid) ans = min(ans , ask(t[now].r  , mid + 1 , r , ql , qr)) ;
  return ans ;
}
int ca = 0 ;
int work()
{
  int n , m ;
  scanf("%d%d" , &n , &m) ;
  for(int i = 1; i <= n ;i ++ ) scanf("%d" , &a[i]) ;
  tot = 0 ;
  int p = 1e5 + 10 ;
  build(root[0] , 1 , p ) ;
  for(int i = 1 ; i <= n ;i ++ )
    update(root[i] , root[i - 1] , 1 , p , a[i]) ;
  int lastans = 0 ;
  set<int> s ;
  for(int i = 1; i <= m ;i ++ ) {
    int op , r ;
    scanf("%d%d" , &op , &r) ;
    r ^= lastans ;

    if(op == 1) s.insert(a[r]) ;
    else {
      int yy ;
      scanf("%d" , &yy) ;
      yy ^= lastans ;
      int res1 = ask(root[r] , 1 , p , yy , p) ;
      int res2 = 1e9 ;
      auto it = s.lower_bound(yy) ;
      if(it != s.end()) res2 = *it ;
      lastans = min(res1 , res2) ;
      printf("%d\n" , lastans) ;
    }
  }
  return 0 ;
}
int main()
{
  //   freopen("C://Users//spnooyseed//Desktop//in.txt" , "r" , stdin) ;
  //   freopen("C://Users//spnooyseed//Desktop//out.txt" , "w" , stdout) ;
  int n ;
  scanf("%d" , &n) ;
  while(n --)
  work() ;
  return 0 ;
}
/*
*/

path

Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3293 Accepted Submission(s): 781

Problem Description
You have a directed weighted graph with n vertexes and m edges. The value of a path is the sum of the weight of the edges you passed. Note that you can pass any edge any times and every time you pass it you will gain the weight.

Now there are q queries that you need to answer. Each of the queries is about the k-th minimum value of all the paths.

Input
The input consists of multiple test cases, starting with an integer t (1≤t≤100), denoting the number of the test cases.
The first line of each test case contains three positive integers n,m,q. (1≤n,m,q≤5∗104)

Each of the next m lines contains three integers ui,vi,wi, indicating that the i−th edge is from ui to vi and weighted wi.(1≤ui,vi≤n,1≤wi≤109)

Each of the next q lines contains one integer k as mentioned above.(1≤k≤5∗104)

It's guaranteed that Σn ,Σm, Σq,Σmax(k)≤2.5∗105 and max(k) won't exceed the number of paths in the graph.

Output
For each query, print one integer indicates the answer in line.

Sample Input
1
2 2 2
1 2 1
2 1 2
3
4
 

Sample Output
3
3
Hint

1->2 value :1

2->1 value: 2

1-> 2-> 1 value: 3

2-> 1-> 2 value: 3

貪心:k短路最多是由k段拼成,如果有K + 1段,可以把第K + 1段直接拋掉,所以直接循環max(k)次 。 每次把小根堆里面的最小的一個拿出來,並用這個點去擴展,同時用大根堆用來記錄當前已經選中的變,如果當前走的這條路徑長度小於大根堆里面的最大值,那就直接替換一下 , 離線處理

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <unordered_map>
#include <vector>
#include <map>
#include <list>
#include <queue>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <stack>
#include <set>
#include <bitset>
#include <deque>
#pragma GCC optimize(3 , "Ofast" , "inline")
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization("unroll-loops")
using namespace std ;
#define ios ios::sync_with_stdio(false) , cin.tie(0) , cout.tie(0)
#define x first
#define y second
#define pb push_back
#define ls rt << 1
#define rs rt << 1 | 1
typedef long long ll ;
const double esp = 1e-6 , pi = acos(-1) ;
typedef pair<ll , ll> PII ;
const int N = 1e6 + 10 , INF = 0x3f3f3f3f , mod = 1e9 + 7;
vector<PII> g[N] ;
ll ans[N] , k[N] ;
int work()
{
  int n , m , q ;
  priority_queue<ll> p ;
  priority_queue<PII , vector<PII> , greater<PII>> que ;
  while(p.size()) p.pop() ;
  while(que.size()) que.pop() ;
  scanf("%d%d%d" , &n , &m , &q) ;
  for(int i = 1; i <= n ;i ++ ) g[i].clear() ;
  for(int i = 1; i <= m;i ++ ) {
    ll u , v , w ;
    scanf("%lld%lld%lld" , &u , &v , &w) ;
    g[u].push_back({w , v}) ;
    que.push({w , v}) ;
    p.push(w) ;
  }
  for(int i = 1; i <= n ;i ++ )
   sort(g[i].begin() , g[i].end()) ;
  ll maxn = 0 ;
  for(int i = 1; i <= q; i ++ ) scanf("%lld" , &k[i]) , maxn = max(maxn , k[i]) ;
  for(int i = 0 ;i <= maxn ;i ++ ) ans[i] = 0 ;
  for(int i = 1; i <= maxn ;i ++ ) {
    ans[i] = que.top().x ;
    ll u = que.top().y ;
    que.pop() ;
    for(auto v : g[u]) {
      ll y = v.y , len = ans[i] + v.x ;
      if(p.size() >= maxn) {
        if(p.top() < len) break ;
        p.pop() ;
        p.push(len) ;
        que.push({len , y}) ;
      }else {
        que.push({len , y}) ;
        p.push(len) ;
      }
    }
  }
  for(int i = 1; i <= q; i ++ )
   printf("%lld\n" , ans[k[i]]) ;
  return 0 ;
}
int main()
{
  //   freopen("C://Users//spnooyseed//Desktop//in.txt" , "r" , stdin) ;
  //   freopen("C://Users//spnooyseed//Desktop//out.txt" , "w" , stdout) ;
  int n ;
  cin >> n ;
  while(n --)
  work() ;
  return 0 ;
}
/*
*/


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM