flink在流處理上的source和在批處理上的source基本一致。大致有4大類
1.基於本地集合的source(Collection-based-source)
2.基於文件的source(File-based-source)
3.基於網絡套接字的source(Socket-based-source)
4.自定義的source(Custom-source)
基於集合的source

import org.apache.flink.streaming.api.scala.{StreamExecutionEnvironment, _} import scala.collection.immutable.{Queue, Stack} import scala.collection.mutable import scala.collection.mutable.{ArrayBuffer, ListBuffer} object DataSource001 { def main(args: Array[String]): Unit = { val senv = StreamExecutionEnvironment.getExecutionEnvironment //0.用element創建DataStream(fromElements) val ds0: DataStream[String] = senv.fromElements("spark", "flink") ds0.print() //1.用Tuple創建DataStream(fromElements) val ds1: DataStream[(Int, String)] = senv.fromElements((1, "spark"), (2, "flink")) ds1.print() //2.用Array創建DataStream val ds2: DataStream[String] = senv.fromCollection(Array("spark", "flink")) ds2.print() //3.用ArrayBuffer創建DataStream val ds3: DataStream[String] = senv.fromCollection(ArrayBuffer("spark", "flink")) ds3.print() //4.用List創建DataStream val ds4: DataStream[String] = senv.fromCollection(List("spark", "flink")) ds4.print() //5.用List創建DataStream val ds5: DataStream[String] = senv.fromCollection(ListBuffer("spark", "flink")) ds5.print() //6.用Vector創建DataStream val ds6: DataStream[String] = senv.fromCollection(Vector("spark", "flink")) ds6.print() //7.用Queue創建DataStream val ds7: DataStream[String] = senv.fromCollection(Queue("spark", "flink")) ds7.print() //8.用Stack創建DataStream val ds8: DataStream[String] = senv.fromCollection(Stack("spark", "flink")) ds8.print() //9.用Stream創建DataStream(Stream相當於lazy List,避免在中間過程中生成不必要的集合) val ds9: DataStream[String] = senv.fromCollection(Stream("spark", "flink")) ds9.print() //10.用Seq創建DataStream val ds10: DataStream[String] = senv.fromCollection(Seq("spark", "flink")) ds10.print() //11.用Set創建DataStream(不支持) //val ds11: DataStream[String] = senv.fromCollection(Set("spark", "flink")) //ds11.print() //12.用Iterable創建DataStream(不支持) //val ds12: DataStream[String] = senv.fromCollection(Iterable("spark", "flink")) //ds12.print() //13.用ArraySeq創建DataStream val ds13: DataStream[String] = senv.fromCollection(mutable.ArraySeq("spark", "flink")) ds13.print() //14.用ArrayStack創建DataStream val ds14: DataStream[String] = senv.fromCollection(mutable.ArrayStack("spark", "flink")) ds14.print() //15.用Map創建DataStream(不支持) //val ds15: DataStream[(Int, String)] = senv.fromCollection(Map(1 -> "spark", 2 -> "flink")) //ds15.print() //16.用Range創建DataStream val ds16: DataStream[Int] = senv.fromCollection(Range(1, 9)) ds16.print() //17.用fromElements創建DataStream val ds17: DataStream[Long] = senv.generateSequence(1, 9) ds17.print() senv.execute(this.getClass.getName) } }

//TODO 2.基於文件的source(File-based-source) //0.創建運行環境 val env = StreamExecutionEnvironment.getExecutionEnvironment //TODO 1.讀取本地文件 val text1 = env.readTextFile("data2.csv") text1.print() //TODO 2.讀取hdfs文件 val text2 = env.readTextFile("hdfs://hadoop01:9000/input/flink/README.txt") text2.print() env.execute()

val source = env.socketTextStream("IP", PORT)
Kafka基本命令:
● 查看當前服務器中的所有topic bin/kafka-topics.sh --list --zookeeper hadoop01:2181 ● 創建topic bin/kafka-topics.sh --create --zookeeper hadoop01:2181 --replication-factor 1 --partitions 1 --topic test ● 刪除topic sh bin/kafka-topics.sh --delete --zookeeper zk01:2181 --topic test 需要server.properties中設置delete.topic.enable=true否則只是標記刪除或者直接重啟。 ● 通過shell命令發送消息 sh bin/kafka-console-producer.sh --broker-list hadoop01:9092 --topic test ● 通過shell消費消息 bin/kafka-console-consumer.sh --zookeeper hadoop01:2181 --from-beginning --topic test1 ● 查看消費位置 bin/kafka-run-cla.ss.sh kafka.tools.ConsumerOffsetChecker --zookeeper zk01:2181 --group testGroup ● 查看某個Topic的詳情 bin/kafka-topics.sh --topic test --describe --zookeeper zk01:2181 ● 對分區數進行修改 kafka-topics.sh --zookeeper zk01 --alter --partitions 15 --topic utopic
使用flink消費kafka的消息(不規范,其實需要自己手動維護offset):
import java.util.Properties import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment} import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09 import org.apache.flink.streaming.util.serialization.SimpleStringSchema import org.apache.flink.api.scala._ /** * Created by angel; */ object DataSource_kafka { def main(args: Array[String]): Unit = { //1指定kafka數據流的相關信息 val zkCluster = "hadoop01,hadoop02,hadoop03:2181" val kafkaCluster = "hadoop01:9092,hadoop02:9092,hadoop03:9092" val kafkaTopicName = "test" //2.創建流處理環境 val env = StreamExecutionEnvironment.getExecutionEnvironment //3.創建kafka數據流 val properties = new Properties() properties.setProperty("bootstrap.servers", kafkaCluster) properties.setProperty("zookeeper.connect", zkCluster) properties.setProperty("group.id", kafkaTopicName) val kafka09 = new FlinkKafkaConsumer09[String](kafkaTopicName, new SimpleStringSchema(), properties) //4.添加數據源addSource(kafka09) val text = env.addSource(kafka09).setParallelism(4) /** * test#CS#request http://b2c.csair.com/B2C40/query/jaxb/direct/query.ao?t=S&c1=HLN&c2=CTU&d1=2018-07-12&at=2&ct=2&inf=1#CS#POST#CS#application/x-www-form-urlencoded#CS#t=S&json={'adultnum':'1','arrcity':'NAY','childnum':'0','depcity':'KHH','flightdate':'2018-07-12','infantnum':'2'}#CS#http://b2c.csair.com/B2C40/modules/bookingnew/main/flightSelectDirect.html?t=R&c1=LZJ&c2=MZG&d1=2018-07-12&at=1&ct=2&inf=2#CS#123.235.193.25#CS#Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1#CS#2018-01-19T10:45:13:578+08:00#CS#106.86.65.18#CS#cookie * */ val values: DataStream[ProcessedData] = text.map{ line => var encrypted = line val values = encrypted.split("#CS#") val valuesLength = values.length var regionalRequest = if(valuesLength > 1) values(1) else "" val requestMethod = if (valuesLength > 2) values(2) else "" val contentType = if (valuesLength > 3) values(3) else "" //Post提交的數據體 val requestBody = if (valuesLength > 4) values(4) else "" //http_referrer val httpReferrer = if (valuesLength > 5) values(5) else "" //客戶端IP val remoteAddr = if (valuesLength > 6) values(6) else "" //客戶端UA val httpUserAgent = if (valuesLength > 7) values(7) else "" //服務器時間的ISO8610格式 val timeIso8601 = if (valuesLength > 8) values(8) else "" //服務器地址 val serverAddr = if (valuesLength > 9) values(9) else "" //獲取原始信息中的cookie字符串 val cookiesStr = if (valuesLength > 10) values(10) else "" ProcessedData(regionalRequest, requestMethod, contentType, requestBody, httpReferrer, remoteAddr, httpUserAgent, timeIso8601, serverAddr, cookiesStr) } values.print() val remoteAddr: DataStream[String] = values.map(line => line.remoteAddr) remoteAddr.print() //5.觸發運算 env.execute("flink-kafka-wordcunt") } } //保存結構化數據 case class ProcessedData(regionalRequest: String, requestMethod: String, contentType: String, requestBody: String, httpReferrer: String, remoteAddr: String, httpUserAgent: String, timeIso8601: String, serverAddr: String, cookiesStr: String )