最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯。本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现。 一 朴素贝叶斯概述 ...
朴素贝叶斯 Naive Bayes 特点:基于贝叶斯定义和特征条件 属性 独立假设的分类器方法 优点:模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单,具有很好的模型的可解释性。朴素贝叶斯模型与其他分类方法相比具有最小的理论误差率。 缺点:属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。 应用:朴素贝叶斯算法一般应用在文本分类 ...
2022-04-17 17:39 0 796 推荐指数:
最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯。本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现。 一 朴素贝叶斯概述 ...
的条件下都是条件独立的。 1、朴素贝叶斯朴素在哪里? 简单来说:利用贝叶斯定理求解联合概率P( ...
简介 朴素贝叶斯是一种基于概率进行分类的算法,跟之前的逻辑回归有些相似,两者都使用了概率和最大似然的思想。但与逻辑回归不同的是,朴素贝叶斯通过先验概率和似然概率计算样本在每个分类下的概率,并将其归为概率值最大的那个分类。朴素贝叶斯适用于文本分类、垃圾邮件处理等NLP下的多分类问题。 核心 ...
概率分类器: 朴素贝叶斯是一种直接衡量标签和特征质检的概率关系的有监督学习算法, 是一种专注分类的算法, 朴素贝叶斯的算法根源是基于概率论和数理统计的贝叶斯理论, 因此它是根正苗红的概率模型. 关键概念: 联合概率: X取值为x和Y的取值为y, 两个事件同时发生的概率, 表示 ...
快。 4、决策树可以很好的扩展到大型数据库中,同时它的大小独立于数据库大小。 二、决策树缺点 1、对缺失数据 ...
类标记为,是和的联合概率分布,数据集 由独立同分布产生。 朴素贝叶斯法就是通过训练集来学习 ...
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立。 条件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 贝叶斯公式可以写成: \[p ...
朴素贝叶斯中的朴素是指特征条件独立假设, 贝叶斯是指贝叶斯定理, 我们从贝叶斯定理开始说起吧. 1. 贝叶斯定理 贝叶斯定理是用来描述两个条件概率之间的关系 1). 什么是条件概率? 如果有两个事件A和B, 条件概率就是指在事件B发生的条件下, 事件A发生的概率, 记作P(A|B ...