学习目标 事件驱动的交易系统构建:介绍交易系统平台的基本架构与实现。包括事件驱动软件概述、交易系统的组成部分编程,事件驱动的交易执行。 交易策略实现:移动平均跨越策略、S&P500预测交易、均值回复的股权配对交易、 策略优化:参数优化、模型选择、策略优化 概述 ...
量化策略开发第一步:数据源 开发量化策略的第一个重要环节:如何获取数据 开发量化策略所需要的数据,包括历史数据和实时数据。特别指出,我们只介绍免费的数据源,以帮助大家降低成本。 先从股票开始,股票的历史数据,我们可以借用三方平台回测 例如优矿 聚宽 米筐等 ,相当于借用了平台的历史数据,但平台历史数据有一个问题:往往不能将全量数据下载到本地。想要自己搭建股票回测框架的话,推荐用tushare的数 ...
2022-04-17 10:37 0 922 推荐指数:
学习目标 事件驱动的交易系统构建:介绍交易系统平台的基本架构与实现。包括事件驱动软件概述、交易系统的组成部分编程,事件驱动的交易执行。 交易策略实现:移动平均跨越策略、S&P500预测交易、均值回复的股权配对交易、 策略优化:参数优化、模型选择、策略优化 概述 ...
量化投资策略:常见的几种Python回测框架(库) 在实盘交易之前,必须对量化交易策略进行回测。在此,我们评价一下常用的Python回测框架(库)。评价的尺度包括用途范围(回测、虚盘交易、实盘交易),易用程度(结构良好、文档完整)和扩展性(速度快、用法简单、与其他框架库的兼容 ...
上篇文章里用pyalgotrade框架计算了策略收益率、夏普值、最大回测等回测指标,但是貌似没有直接计算α值,β值,信息比率等回测指标的方法。看来要自己实现了。 参照《Python量化策略风险指标》( https://zhuanlan.zhihu.com/p/55425806)这篇文章里的定义实现 ...
从前两篇文章中,我们使用pyalgotrade框架进行了量化策略的回测的基本操作。使用框架确实比较方便,但是仍有很多每次都要进行的重复操作,比如建立数据源,建立策略,绑定策略与分析器,运行回测,取得回测结果,绘图等。能不能进行进一步的封装?我想要的是,指定要交易的股票代码,基准股票代码,初始资金 ...
到博客中。 在实盘交易之前,必须对量化交易策略进行回测。在此,我们评价一下常用的Python回测框架 ...
年初学习量化投资,一开始想自己从头写,还是受了C/C++的影响。结果困在了计算回测数据那里,结果老也不对,就暂时放下了。最近试了一下python的各个量化投资框架,发现一个能用的——pyalgotrade,重新开始吧。这是一个事件驱动型量化交易框架。 使用pyalgotrade的一大 ...
Python在量化领域的现状 就跟Java在web领域无可撼动的地位一样,Python也已经在金融量化投资领域占据了重要位置,从各个业务链条都能找到相应的框架实现。 在量化投资(证券和比特币)开源项目里,全球star数排名前10位里面,有7个是Python实现的。从数据获取到策略回测再到交易 ...
backtrader简介 backtrader是基于Python的量化回测框架,优点是运行速度快,支持pandas的矢量运算;支持参数自动寻优运算,内置了talib股票分析技术指标库;支持多品种、多策略、多周期的回测和交易;支持pyflio、empyrica分析模块库、alphalens ...