Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找 ...
在Redis 缓存击穿 失效 缓存穿透 缓存雪崩怎么解决 中我们说到可以使用布隆过滤器避免 缓存穿透 。 码哥,布隆过滤器还能在哪些场景使用呀 比如我们使用 码哥跳动 开发的 明日头条 APP 看新闻,如何做到每次推荐给该用户的内容不会重复,过滤已经看过的内容呢 你会说我们只要记录了每个用户看过的历史记录,每次推荐的时候去查询数据库过滤存在的数据实现去重。 实际上,如果历史记录存储在关系数据库里, ...
2022-04-11 14:22 0 810 推荐指数:
Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找 ...
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等。 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否 ...
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, gmail等邮箱垃圾邮件过滤功能 这几个例子有一个共同的特点 ...
一 前言 假如有一个15亿用户的系统,每天有几亿用户访问系统,要如何快速判断是否为系统中的用户呢? 方法一,将15亿用户存储在数据库中,每次用户访问系统,都到数据库进行查询判断,准确性高,但是查询速度会比较慢。 方法二,将15亿用户缓存在Redis内存中,每次用户访问系统,都到 ...
介绍: 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。 应用例子 ...
1 位图(BitMap) 在讨论布隆过滤器之前,先看一下位图是什么。 首先考虑一个问题场景 假如需要过滤某些不安全网页,现有100亿个黑名单页面,每个网页的URL最多占用64字节。现要设计一种网页过滤系统,可以根据网页的URL判断该网页是否在黑名单上。 最直观的想法必然是使用一个 ...
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。 这个问题的本质在于判断一个元素是否在一个集合中。哈 ...
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中。和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中。 算法: 1. 首先需要k个hash函数,每个函数 ...