1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑。它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT。 BERT的全称是Bidirectional Encoder Representation from Transformer,如名称所示 ...
数据转换 .numpy gt tensor data torch.tensor data .tensor gt numpy 非训练数据 训练结束后的tensor 的转换: data np.array data 如果是训练过程中需要转换,则: data data .cpu .data.numpy 动态,会一起改变 data data .cpu .detach .numpy 静态 .维度转换 如果第一 ...
2022-03-13 14:26 0 1424 推荐指数:
1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑。它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT。 BERT的全称是Bidirectional Encoder Representation from Transformer,如名称所示 ...
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的《讲解开源项目》 系列。这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇 ...
JS做深度学习2——导入训练模型 改进项目 前段时间,我做了个RNN预测金融数据的毕业设计(华尔街),当时TensorFlow.js还没有发布,我不得已使用了keras对数据进行了训练,并且拟合好了不同期货的模型,因为当时毕设的网站是用node.js写的,为了可以在网站中预测,我采取的方案 ...
深度学习模型训练过程 一.数据准备 1. 基本原则: 1)数据标注前的标签体系设定要合理 2)用于标注的数据集需要无偏、全面、尽可能均衡 3)标注过程要审核 2. 整理数据集 1)将各个标签的数据放于不同的文件夹中,并统计各个标签的数目 2)样本均衡,样本不会绝对均衡,差不多 ...
以典型的分类问题为例,来梳理模型的训练过程。训练的过程就是问题发现的过程,一次训练是为下一步迭代做好指引。 1.数据准备 准备: 数据标注前的标签体系设定要合理 用于标注的数据集需要无偏、全面、尽可能均衡 标注过程要审核 整理数据集 将各个标签的数据放于 ...
使用 谷歌提供了免费的K80的GPU用于训练深度学习的模型。而且最赞的是以notebook的形式提供,完全可以做到开箱即用。你可以从Google driver处打开。或者这里 默认创建的是没有GPU的,我们需要修改,点击“代码执行程序” 然后就会有GPU使用了 挂在Google云盘 ...
Pytorch Keras 注意:先安装tensorflow-gpu版本,再安装ke ...
此篇 TensorFlow简要教程及线性回归算法示例 介绍了使用TensorFlow进行机器学习的基本流程,此篇 介绍一个快速确定神经网络模型中各层矩阵维度的方法 介绍了在设计神经网络的时候怎么确定各层矩阵的维度(矩阵的行数与列数),接下来就可以开始训练模型了,在训练模型的过程中,怎么衡量模型 ...