简化模型: 假设1:影响房价的关键因素是卧室个数,卫生间个数和居住面积,记为x1,x2,x3 假设2:成交价是关键因素的加权和。 y = w1x1+w2x2+w3x3 权重和偏差的实际值在后面决定 线性模型 给定n维输入x = [x1,x2,...,xn]^T 线性 ...
. 线性回归 . 线性模型 当输入包含d个特征,预测结果表示为: 记x为样本的特征向量,w为权重向量,上式可表示为: 对于含有n个样本的数据集,可用X来表示n个样本的特征集合,其中行代表样本,列代表特征,那么预测值可用矩阵乘法表示为: 给定训练数据特征X和对应的已知标签y,线性回归的 标是找到 组权重向量w和偏置b:当给定从X的同分布中取样的新样本特征时,这组权重向量和偏置能够使得新样本预测标签 ...
2022-03-27 13:42 0 703 推荐指数:
简化模型: 假设1:影响房价的关键因素是卧室个数,卫生间个数和居住面积,记为x1,x2,x3 假设2:成交价是关键因素的加权和。 y = w1x1+w2x2+w3x3 权重和偏差的实际值在后面决定 线性模型 给定n维输入x = [x1,x2,...,xn]^T 线性 ...
最后结果: 代码来自于《深度学习框架PyTorch:入门与实践》,环境为PyTorch1.0 + Jupyter ...
线性回归:w1x1+w2x2+w3x3+......+wnxn+bias(这是一个偏移量),我们采用的算法是:线性回归,策略是:均方误差,优化是:梯度下降API, 1.转准备好实验的数据:100个数据,每一个有一个特征值,所以形成一个【100,1】的列表,在准备一个目标函数:y=0.8x+0.7 ...
一.模型结构 线性回归算是回归任务中比较简单的一种模型,它的模型结构可以表示如下: \[f(x)=w^Tx^* \] 这里\(x^*=[x^T,1]^T\),\(x\in R^n\),所以\(w\in R^{n+1}\),\(w\)即是模型需要学习的参数,下面造一些伪数据进行演示 ...
Pytorch 实现简单线性回归 问题描述: 使用 pytorch 实现一个简单的线性回归。 受教育年薪与收入数据集 单变量线性回归 单变量线性 ...
目录 线性回归 基本要素 模型 模型训练 训练数据 损失函数 优化算法 模型预测 表示方法 神经网络图 矢量计算表达式 ...
线性回归 生成数据集 读取数据 定义模型 初始化模型参数 定义损失函数 定义优化算法 训练模型 softmax回归的简洁实现 获取和读取数据 定义 ...