上篇文章(基于MCRA-OMLSA的语音降噪(二):实现 )讲了基于MCRA-OMLSA的语音降噪的软件实现。本篇继续讲,主要讲C语言下怎么对数学库里的求平方根(sqrt())、求自然指数(exp())、求自然对数(log())的函数做替换。 1,求平方根 求平方根最常用的方法是牛顿 ...
上篇文章 基于MCRA OMLSA的语音降噪 一 :原理 讲了基于MCRA OMLSA降噪的原理,本篇讲怎么做软件实现。软件实现有多种方式。单纯看降噪效果可用python,因为python有丰富的库可用,可节省不少时间,把主要精力放在降噪效果提升上。如果要把算法用在产品上就得用其他语言。我们是芯片公司,且我们team偏底层,最常用的语言是C,所以我又用C实现了该算法。本文先讲讲在python下的 ...
2021-12-28 08:10 0 1817 推荐指数:
上篇文章(基于MCRA-OMLSA的语音降噪(二):实现 )讲了基于MCRA-OMLSA的语音降噪的软件实现。本篇继续讲,主要讲C语言下怎么对数学库里的求平方根(sqrt())、求自然指数(exp())、求自然对数(log())的函数做替换。 1,求平方根 求平方根最常用的方法是牛顿 ...
前面的几篇文章讲了webRTC中的语音降噪。最近又用到了基于MCRA-OMLSA的语音降噪,就学习了原理并且软件实现了它。MCRA主要用于噪声估计,OMLSA是基于估计出来的噪声去做降噪。类比于webRTC中的降噪方法,也有噪声估计(分位数噪声估计法)和基于估计出来的噪声降噪(维纳滤波),MCRA ...
发现很多朋友想进入语音降噪处理的大门,却很容易被铺天盖地的理论弄的很迷惑,不知道从哪里开始比较好。网上给出的参考文章大多干说理论,没有代码实现。很不利于学习。于是打算写这篇语音降噪的文章,并给出相应的实现代码方便交流和进一步的学习。实现代码请到音视频算法讨论QQ群(374737122)中自行 ...
参考 1、语音增强,2017年12月发表,偏基础概述:https://blog.csdn.net/zhanglu_wind/article/details/78700393?locationNum=8&fps=1 2、RNNoise,2017年9月发表,深度学习用于噪声抑制 ...
前面的文章(语音降噪论文“A Hybrid Approach for Speech Enhancement Using MoG Model and Neural Network Phoneme Classifier”的研读 )梳理了论文的思想。本篇就开始对其实践,主要分以下几步:1,基于一个语料库 ...
博主最近转战语音增强研究,刚学习了最基础也是最成熟的方法——谱减法,最早是boll提出的《Suppression of acousic noise in speech using spectral subtraction》。http://blog.csdn.net/leixiaohua1020 ...
噪声问题一直是语音识别的一个老大难的问题,在理想的实验室的环境下,识别效果已经非常好了,之前听很多音频算法工程师抱怨,在给识别做降噪时,经常发现WER不降反升,降低了识别率,有点莫名其妙,又无处下手。 刚好,前段时间调到了AIlab部门,有机会接触这块,改善语音识别的噪声问题,虽然在 ...
上篇文章(基于混合模型的语音降噪实践)实践了基于混合模型的算法来做语音降噪,有了一定的降噪效果。本篇说说怎么样来提升降噪效果。 算法里会算每个音素的高斯模型参数,也会建一个音素分类的神经网络模型。这些都是依赖于音素对齐的,音素对齐做的越好,每个音素的高斯模型越准确,音素分类模型越收敛准确率 ...