1.估计概率密度p(x|wi) (1)贝叶斯决策 (2)P(wi)和p(x | wi)的估计方法 ①先验概率P(wi)估计: 用训练数据中各类出现的频率估计。 依靠经验。 ② 类条件概率密度函数p(x | wi)估计,2类方法: 参数估计:最大似然估计,贝叶斯估计 ...
. 点估计与优良性 点估计 总体 X 的分布函数形式已知,但它的一个或多个参数未知,借助总体的一个样本来估计总体未知参数的值的问题称为点估计。 点估计问题就是要构建一个适当的统计量 hat X .. Xn ,用它的观察值 hat x .. xn 来估计未知参数 。 pass 无偏性 若估计量 hat X .. Xn 的数学期望 E hat 存在,且对任意 有 E hat ,则称 hat 是 的无 ...
2021-12-14 12:27 0 758 推荐指数:
1.估计概率密度p(x|wi) (1)贝叶斯决策 (2)P(wi)和p(x | wi)的估计方法 ①先验概率P(wi)估计: 用训练数据中各类出现的频率估计。 依靠经验。 ② 类条件概率密度函数p(x | wi)估计,2类方法: 参数估计:最大似然估计,贝叶斯估计 ...
目录 1 点估计的概念与无偏性 2 矩估计及相合性 3 最大似然估计与EM算法 3.1 最大似然估计(MLE,maximum likelihood estimation) 3.2 EM算法(Expectation-maximization ...
简单的讨论一下参数估计理论 一、什么是参数估计 参数通常用来表示一个量,可以是标量也可以是有值向量。按照时间变化,也可以分为时常参数和时变参数。对于时常参数的估计称为参数估计。对于时变的参数估计称为状态估计,本文不研究。参数估计的包括两个主要的模型以及四个基本估计方法,如下图所示 ...
求置信区间 抽取样本, 样本量为200 计算样本中喝咖啡的均值 重复抽取样本,计算其他样本中喝咖啡的均值,得到抽样分布 抽样分布 计算抽样分布的置信区间以估计总体均值, 置信度95% 输出 ...
1.参数估计和非参数估计 前面提到随机变量的分布不是很明确时,我们需要先对随机变量的分布进行估计。有一种情况是我们知道变量分布的模型,但是具体分布的参数未知,我们通过确定这些未知参数就可以实现对变量的估计,这种方式就是参数估计。其中,比较基础且常见的参数估计方法有最大似然估计、最小二乘估计 ...
我们观测世界,得到了一些数据,我们要从这些数据里面去找出规律来认识世界,一般来说,在概率上我们有一个一般性的操作步骤 1. 观测样本的存在 2. 每个样本之间是独立的 3. 所有样本符合一 ...
1. 贝叶斯之参数估计 1. 贝叶斯之参数估计 1.1. 背景知识 1.2. 最大似然估计(MLE) 1.3. 最大后验概率估计(MAP) 1.4. 贝叶斯估计 1.5. 什么时候 MAP 估计与最大似然估计相等 1.1. ...
系统辨识与自适应控制MATLAB仿真 修订版 仿真实例 2.6 递推最小二乘法估计 import numpy as np import matplotlib.pyplot as plt from mxulie import M_sequences if __name__ ...