原理: PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力 BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x ...
目录 程序简介 程序 数据集下载 代码分析 程序简介 本实验根据英雄联盟的对局数据,搭建全连接网络分类模型,以粒子群算法对神经网络的节点数和dropout概率进行调优,最后对比默认模型和优化后的模型对英雄联盟比赛结果的预测准确率 粒子群优化算法 PSO 是一种进化计算技术源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。它的优点是收敛快 实现简 ...
2021-11-25 17:02 0 6352 推荐指数:
原理: PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力 BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x ...
算法学习自:MATLAB与机器学习教学视频 1、粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在1995年提出 ...
定义: 粒子群中每个粒子的位置表示BP神经网络当前迭代中权值的集合,每个粒子的维数由网络中起连接作用的权值的数量和阈值个数决定,以给定训练样本集的神经网络输出误差作为神经网络训练问题的适应度函数,适应度值表示神经网络的误差,误差越小则表明粒子在搜索中具有更好的性能,粒子在权值空间内移动搜索 ...
粒子群算法是一种基于鸟类觅食开发出来的优化算法,它是从随机解出发,通过迭代寻找最优解,通过适应度来评价解的品质。 From 《An Improved PSO Algorithm to Optimize BP Neural Network》 PSO算法的搜索性能取决于其全局探索 ...
1、粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于 Swarm Inteligence的优化方法。同遗传算法 ...
1、粒子群优化算法(Partical Swarm Optimization PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。 2、粒子群算法最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食 ...
本文不对PSO多做解释,代码主打通俗,只是最普通的PSO。 因为作业没有要求保存每一代的position and speed并且没有要求做自适应的动态惯性因子,所以一切从简。 作业要求: 粒子数:100 迭代次数:100 // solving的参数 x1 x2 ...
,经过多年改进最终形成了粒子群优化算法(Particle Swarm Optimization, PSO ...