点云处理有时因为数据量太大,我们需要对其进行下采样。 这里的方法是先将点云填入固定大小的三维网格中,然后每个网格中选一个点生成新的点云。 新点云即为下采样后的点云。 这里使用斯坦福兔子作为测试点云。 小兔子pcd下载地址。 原始点云: 采样后点云: matlab代码如下: ...
来源:https: zhuanlan.zhihu.com p 本文介绍python点云数据处理中的点云下采样算法和关键点算法以及在点云工具箱软件中的实现。由于点云的海量和无序性,直接处理的方式在对邻域进行搜索时需要较高的计算成本。一个常用的解决方式就是对点云进行下采样,将对全部点云的操作转换到下采样所得到的点上,降低计算量。 一 均匀下采样 均匀下采样有多种不同的采样方式,其中最远点采样是较为简单 ...
2021-11-23 10:37 0 1337 推荐指数:
点云处理有时因为数据量太大,我们需要对其进行下采样。 这里的方法是先将点云填入固定大小的三维网格中,然后每个网格中选一个点生成新的点云。 新点云即为下采样后的点云。 这里使用斯坦福兔子作为测试点云。 小兔子pcd下载地址。 原始点云: 采样后点云: matlab代码如下: ...
原文链接 点云采样分类 点云采样的方法有很多种,常见的有均匀采样,几何采样,随机采样,格点采样等。下面介绍一些常见的采样方法。 格点采样 格点采样,就是把三维空间用格点离散化,然后在每个格点里采样一个点。具体方法如下: 1. 创建格点:如中间图所示,计算点云的包围盒,然后把包围盒离散 ...
使用体素化网格方法实现下采样,即减少点的数量,减少点云数据,并同时保持点云的形状特征,在提高配准、曲面重建、形状识别等算法速度中非常实用。 PCL实现的VoxelGrid类通过输入的点云数据创建一个三维体素栅格(可把体素栅格想象为微小的空间三维立方体的集合),然后在每个体素(即,三维立方体 ...
测量较小的对象时产生一些误差,直接重建会使曲面不光滑或者有漏洞,为了建立完整的模型需要对表面进行平滑处理和漏洞修复.可通过数据重建来解决这一问题,重采样算法通过对周围数据点进行高阶多项式插值来重建表面缺少的部分. 由多个扫描配准后得到的数据直接拿来重建可能产生 "双墙"等重影,即拼接的区域出现 ...
参考Adam大神的文章 激光雷达的地面-非地面分割和pcl_ros实践 PCL基本入门PCL是一个开源的点云处理库,是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,包含点云获取、滤波、分割、配准、检索、特征提取、识别 ...
今天和挪威的同事讨论点云的vex函数pcunshaded(),结果两个人都没搞太明白倒是转到了另一个话题,就是点云采样制作连线怎样避免重复计算,这里做一下记录。 如果采用严格的避免重复连接的方法,我们可以在每个点上增加两个点属性,一个是确定自己是否已经建立连线的判断属性,另一个是存储连线对应 ...
降采样: Edit=>Subsample 出现一个弹窗,可以选择3种降采样的方式:Random, Space, Octree。 下面用一个例子来说明3种方式。例子是一个5.88M个点的点云文件(用space方式,0.2米,降采样之后的)。 1. ...
采样: 2048HZ对信号来说是过采样了,事实上只要信号不混叠就好(满足尼奎斯特采样定理),所以可 以对过采样的信号作抽取,即是所谓的“降采样”。 在现场中采样往往受具体条件的限止,或者不存在300HZ的采样率,或调试非常困难 ...