1、预训练模型 BERT是一个预训练的模型,那么什么是预训练呢?举例子进行简单的介绍 假设已有A训练集,先用A对网络进行预训练,在A任务上学会网络参数,然后保存以备后用,当来一个新的任务B,采取相同的网络结构,网络参数初始化的时候可以加载A学习好的参数,其他的高层参数随机初始化 ...
CPT: A Pre Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation 复旦大学,邱锡鹏老师团队 使用不平衡的Transformer编码器解码器架构,用MLM和DAE联合预训练,均可用于NLU和NLG。 CPT: a novel Chinese Pre trained Unba ...
2021-11-15 10:15 0 154 推荐指数:
1、预训练模型 BERT是一个预训练的模型,那么什么是预训练呢?举例子进行简单的介绍 假设已有A训练集,先用A对网络进行预训练,在A任务上学会网络参数,然后保存以备后用,当来一个新的任务B,采取相同的网络结构,网络参数初始化的时候可以加载A学习好的参数,其他的高层参数随机初始化 ...
2019年7月,百度ERNIE再升级,发布持续学习的语义理解框架ERNIE 2.0,及基于此框架的ERNIE 2.0预训练模型, 它利用百度海量数据和飞桨(PaddlePaddle)多机多卡高效训练优势,通过深度神经网络与多任务学习等技术,持续学习海量数据和知识。基于该框架的艾尼(ERNIE)预 ...
Bert Roberta ALBert XLNet Electra MacBert ...
在去年11月份,NLP大神Manning联合谷歌做的ELECTRA一经发布,迅速火爆整个NLP圈,其中ELECTRA-small模型参数量仅为 BERT-base模型的1/10,性能却依然能与BERT、RoBERTa等模型相媲美。 在前不久,谷歌终于开源了ELECTRA,并发布了预训练模型,这对 ...
1.什么是Bert? Bert用我自己的话就是:使用了transformer中encoder的两阶段两任务两版本的语言模型 没错,就是有好多2,每个2有什么意思呢? 先大体说一下,两阶段是指预训练和微调阶段,两任务是指Mask Language和NSP任务,两个版本是指Google发布 ...
目录 概述 RoBERTa的主要改进 改进优化函数参数 Masking策略 模型输入格式与NSP 更大的batch size 更大语料与更长的训练步数 字节级别的BPE文本编码 实验效果 总结 ...
1.加载预训练模型: 只加载模型,不加载预训练参数:resnet18 = models.resnet18(pretrained=False) print resnet18 打印模型结构 resnet18.load_state_dict(torch.load ...
介绍 在本次将学习另一个有着优秀表现的预训练模型:GPT-2 模型,以及使用它进行文本生成任务实践。 知识点 GPT-2 的核心思想 GPT-2 模型结构详解 GPT-2 进行文本生成 OpenAI 在论文 Improving Language ...