神经网络的前向传播和反向传播公式详细推导 本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解 ...
详解神经网络的前向传播和反向传播本篇博客是对Michael Nielsen所著的 Neural Network and Deep Learning 第 章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解的人可能都知道,神经网络其实就是一个输入XX到输出YY的映射函数:f X Yf X Y,函数的系数就是我们所要训练的网络 ...
2021-11-13 23:22 0 179 推荐指数:
神经网络的前向传播和反向传播公式详细推导 本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解 ...
神经网络 神经网络可以理解为一个输入x到输出y的映射函数,即f(x)=y,其中这个映射f就是我们所要训练的网络参数w,我们只要训练出来了参数w,那么对于任何输入x,我们就能得到一个与之对应的输出y。只要f不同,那么同一个x就会产生不同的y,我们当然是想要获得最符合真实数据的y,那么我们就要训练 ...
1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆圈被称为偏置节点,也就是截距项。神经网络最左边的一层叫做输入层,最右 ...
在本篇章,我们将专门针对vanilla RNN,也就是所谓的原始RNN这种网络结构进行前向传播介绍和反向梯度推导。更多相关内容请见《神经网络的梯度推导与代码验证》系列介绍。 注意: 本系列的关注点主要在反向梯度推导以及代码上的验证,涉及到的前向传播相对而言不会做太详细的介绍 ...
前言 在本篇章,我们将专门针对LSTM这种网络结构进行前向传播介绍和反向梯度推导。 关于LSTM的梯度推导,这一块确实挺不好掌握,原因有: 一些经典的deep learning 教程,例如花书缺乏相关的内容 一些经典的论文不太好看懂,例如On the difficulty ...
在《神经网络的梯度推导与代码验证》之数学基础篇:矩阵微分与求导中,我们总结了一些用于推导神经网络反向梯度求导的重要的数学技巧。此外,通过一个简单的demo,我们初步了解了使用矩阵求导来批量求神经网络参数的做法。在本篇章,我们将专门针对DNN/FNN这种网络结构进行前向传播介绍和反向梯度推导。更多 ...
在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性。在本篇章,我们将专门针对CNN这种网络结构进行前向传播介绍和反向梯度推导。更多相关内容请见《神经网络的梯度 ...
在《神经网络的梯度推导与代码验证》之FNN(DNN)的前向传播和反向梯度推导中,我们学习了FNN(DNN)的前向传播和反向梯度求导,但知识仍停留在纸面。本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化。更多相关内容请见 ...