PyTorch使用LMDB数据库加速文件读取 原始文档:https://www.yuque.com/lart/ugkv9f/hbnym1 对于数据库的了解较少,文章中大部分的介绍主要来自于各种博客和LMDB的文档,但是文档中的介绍,默认是已经了解了数据库的许多知识,这导致目前只能 ...
背景 在深度学习的时候,如果你的batch size调的很大,或者你每次获取一个batch需要许多的预操作,那么pytorch的Dataloader获取一个batch就会花费较多的时间,那么训练的时候就会出现GPU等CPU的情况,训练的效率就会下降。 为了应对这种情况,Tensorflow有TFrecord,但是Pytorch没有对应的数据格式,在查询各类资料之后,我决定使用LMDB这个数据库 L ...
2021-11-12 22:41 0 1663 推荐指数:
PyTorch使用LMDB数据库加速文件读取 原始文档:https://www.yuque.com/lart/ugkv9f/hbnym1 对于数据库的了解较少,文章中大部分的介绍主要来自于各种博客和LMDB的文档,但是文档中的介绍,默认是已经了解了数据库的许多知识,这导致目前只能 ...
问题背景 训练深度学习模型往往需要大规模的数据集,这些数据集往往无法直接一次性加载到计算机的内存中,通常需要分批加载。数据的I/O很可能成为训练深度网络模型的瓶颈,因此数据的读取速度对于大规模的数据集(几十G甚至上千G)是非常关键的。例如:https://discuss.pytorch ...
问题描述: lmdb文件支持数据+标签的形式,但是却只能写入一个标签,引入多标签的解决方法有很多,这儿详细说一下我的办法:制作多个data数据,分别加入一个标签。我的方法只适用于标签数量较少的情况,标签数量比较多的话建议修改源码支持。下面介绍详细步骤。以下均以两个标签作为介绍。 生成两个含 ...
代码:https://github.com/liangX-box/pytorchReadLmdb.git 一. 处理好训练集和验证集后,通过caffe的convert_imageset生成lmdb: (1) /usr/softwares/caffe/build/tools ...
轻量数据库,删和改就没啥必要了。 1,将图片数据写入lmdb。 2,读取数据库 ...
训练一个模型需要有一个数据库,一个网络,一个优化函数。数据读取是训练的第一步,以下是pytorch数据输入框架。 1)实例化一个数据库 假设我们已经定义了一个FaceLandmarksDataset数据库,此数据库将在以下建立。 或者使用 ...
pytorch数据读取机制: sampler生成索引index,根据索引从DataSet中获取图片和标签 1.torch.utils.data.DataLoader 功能:构建可迭代的数据装在器 dataset:Dataset类,决定数据从哪读取及如何读取 batchsize ...
原文:http://studyai.com/article/11efc2bf#采样器 Sampler & BatchSampler 数据库DataBase + 数据集DataSet + 采样器Sampler = 加载器Loader from torch.utils.data ...